Nuprl Lemma : function-on-compact
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ.
  ((∀x,y:{t:ℝ| t ∈ [a, b]} .  ((x = y) ⇒ (f[x] = f[y])))
  ⇒ (∀n:ℕ+
        (∃d:ℝ [((r0 < d)
              ∧ (∀x,y:ℝ.  ((x ∈ [a, b]) ⇒ (y ∈ [a, b]) ⇒ (|x - y| ≤ d) ⇒ (|f[x] - f[y]| ≤ (r1/r(n))))))])))
Proof
Definitions occuring in Statement : 
rfun: I ⟶ℝ, 
rccint: [l, u], 
i-member: r ∈ I, 
rdiv: (x/y), 
rleq: x ≤ y, 
rless: x < y, 
rabs: |x|, 
rsub: x - y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
so_apply: x[s], 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
rfun: I ⟶ℝ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
top: Top, 
sq_stable: SqStable(P), 
iff: P ⇐⇒ Q, 
prop: ℙ, 
and: P ∧ Q, 
true: True, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
nat_plus: ℕ+, 
rccint: [l, u], 
i-approx: i-approx(I;n), 
continuous: f[x] continuous for x ∈ I, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
rleq_wf, 
set_wf, 
rfun_wf, 
req_wf, 
i-member_wf, 
real_wf, 
all_wf, 
nat_plus_wf, 
member_rccint_lemma, 
icompact_wf, 
sq_stable__rleq, 
rccint-icompact, 
less_than_wf, 
rccint_wf, 
function-is-continuous
Rules used in proof : 
applyEquality, 
functionEquality, 
lambdaEquality, 
setEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
imageElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
hypothesisEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}
                (\mexists{}d:\mBbbR{}  [((r0  <  d)
                            \mwedge{}  (\mforall{}x,y:\mBbbR{}.
                                      ((x  \mmember{}  [a,  b])
                                      {}\mRightarrow{}  (y  \mmember{}  [a,  b])
                                      {}\mRightarrow{}  (|x  -  y|  \mleq{}  d)
                                      {}\mRightarrow{}  (|f[x]  -  f[y]|  \mleq{}  (r1/r(n))))))])))
Date html generated:
2018_07_29-AM-09_40_44
Last ObjectModification:
2018_06_22-PM-04_47_33
Theory : reals
Home
Index