Step
*
6
1
1
4
of Lemma
i-member-implies
1. y : ℝ
2. y1 : Top
3. r : ℝ
4. M : ℕ+
5. y ≤ (r - (r1/r(M)))
6. r ≤ r(M)
7. (r1/r(2 * M)) < (r1/r(M))
8. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
9. (r(M) + (r1/r(2 * M))) ≤ r(2 * M)
10. (y + (r1/r(2 * M))) ≤ r
11. r ≤ r(2 * M)
12. ∀y@0:{y@0:ℝ| y < y@0}
((((r - (r1/r(2 * M))) ≤ y@0) ∧ (y@0 ≤ (r + (r1/r(2 * M)))))
⇒ (((y + (r1/r(2 * M))) ≤ y@0) ∧ (y@0 ≤ r(2 * M))))
13. (True ∧ False)
⇒ (y < case ⊥ of inl(b) => b | inr(b) => b)
14. True
15. True
⊢ (y + (r1/r(2 * M))) < r(2 * M)
BY
{ (RWW "5 6" 0 THEN Auto) }
1
1. y : ℝ
2. y1 : Top
3. r : ℝ
4. M : ℕ+
5. y ≤ (r - (r1/r(M)))
6. r ≤ r(M)
7. (r1/r(2 * M)) < (r1/r(M))
8. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
9. (r(M) + (r1/r(2 * M))) ≤ r(2 * M)
10. (y + (r1/r(2 * M))) ≤ r
11. r ≤ r(2 * M)
12. ∀y@0:{y@0:ℝ| y < y@0}
((((r - (r1/r(2 * M))) ≤ y@0) ∧ (y@0 ≤ (r + (r1/r(2 * M)))))
⇒ (((y + (r1/r(2 * M))) ≤ y@0) ∧ (y@0 ≤ r(2 * M))))
13. (True ∧ False)
⇒ (y < case ⊥ of inl(b) => b | inr(b) => b)
14. True
15. True
⊢ ((r(M) - (r1/r(M))) + (r1/r(2 * M))) < r(2 * M)
Latex:
Latex:
1. y : \mBbbR{}
2. y1 : Top
3. r : \mBbbR{}
4. M : \mBbbN{}\msupplus{}
5. y \mleq{} (r - (r1/r(M)))
6. r \mleq{} r(M)
7. (r1/r(2 * M)) < (r1/r(M))
8. (r1/r(M)) = (r(2) * (r1/r(2 * M)))
9. (r(M) + (r1/r(2 * M))) \mleq{} r(2 * M)
10. (y + (r1/r(2 * M))) \mleq{} r
11. r \mleq{} r(2 * M)
12. \mforall{}y@0:\{y@0:\mBbbR{}| y < y@0\}
((((r - (r1/r(2 * M))) \mleq{} y@0) \mwedge{} (y@0 \mleq{} (r + (r1/r(2 * M)))))
{}\mRightarrow{} (((y + (r1/r(2 * M))) \mleq{} y@0) \mwedge{} (y@0 \mleq{} r(2 * M))))
13. (True \mwedge{} False) {}\mRightarrow{} (y < case \mbot{} of inl(b) => b | inr(b) => b)
14. True
15. True
\mvdash{} (y + (r1/r(2 * M))) < r(2 * M)
By
Latex:
(RWW "5 6" 0 THEN Auto)
Home
Index