Step
*
3
1
of Lemma
i-member-proper-iff
1. u : ℝ
2. v : ℝ
3. r : ℝ
4. b : {2...}
5. r(-b) < r
6. r < r(b)
7. m1 : ℕ+
8. u ≤ (r - (r1/r(m1)))
9. m : ℕ+
10. r ≤ (v - (r1/r(m)))
11. u < v
⊢ ∃n:ℕ+. (iproper([u + (r1/r(n)), v - (r1/r(n))]) ∧ ((u + (r1/r(n))) ≤ r) ∧ (r ≤ (v - (r1/r(n)))))
BY
{ (Assert ∃k:ℕ+. (u < (v - (r1/r(k)))) BY
((InstLemma `small-reciprocal-real` [⌜v - u⌝]⋅ THENA (MemTypeCD THEN Auto THEN nRAdd ⌜u⌝ 0⋅ THEN Auto))
THEN ParallelLast
THEN Auto
THEN (nRAdd ⌜u - (r1/r(k))⌝ (-1)⋅ THENA Auto)
THEN nRNorm 0
THEN Auto)) }
1
1. u : ℝ
2. v : ℝ
3. r : ℝ
4. b : {2...}
5. r(-b) < r
6. r < r(b)
7. m1 : ℕ+
8. u ≤ (r - (r1/r(m1)))
9. m : ℕ+
10. r ≤ (v - (r1/r(m)))
11. u < v
12. ∃k:ℕ+. (u < (v - (r1/r(k))))
⊢ ∃n:ℕ+. (iproper([u + (r1/r(n)), v - (r1/r(n))]) ∧ ((u + (r1/r(n))) ≤ r) ∧ (r ≤ (v - (r1/r(n)))))
Latex:
Latex:
1. u : \mBbbR{}
2. v : \mBbbR{}
3. r : \mBbbR{}
4. b : \{2...\}
5. r(-b) < r
6. r < r(b)
7. m1 : \mBbbN{}\msupplus{}
8. u \mleq{} (r - (r1/r(m1)))
9. m : \mBbbN{}\msupplus{}
10. r \mleq{} (v - (r1/r(m)))
11. u < v
\mvdash{} \mexists{}n:\mBbbN{}\msupplus{}. (iproper([u + (r1/r(n)), v - (r1/r(n))]) \mwedge{} ((u + (r1/r(n))) \mleq{} r) \mwedge{} (r \mleq{} (v - (r1/r(n)))))
By
Latex:
(Assert \mexists{}k:\mBbbN{}\msupplus{}. (u < (v - (r1/r(k)))) BY
((InstLemma `small-reciprocal-real` [\mkleeneopen{}v - u\mkleeneclose{}]\mcdot{}
THENA (MemTypeCD THEN Auto THEN nRAdd \mkleeneopen{}u\mkleeneclose{} 0\mcdot{} THEN Auto)
)
THEN ParallelLast
THEN Auto
THEN (nRAdd \mkleeneopen{}u - (r1/r(k))\mkleeneclose{} (-1)\mcdot{} THENA Auto)
THEN nRNorm 0
THEN Auto))
Home
Index