Nuprl Lemma : inf-range-no-mc

I:{I:Interval| icompact(I)} . ∀f:{f:I ⟶ℝifun(f;I)} .  ∃y:ℝinf(f(x)(x∈I)) y


Proof




Definitions occuring in Statement :  ifun: ifun(f;I) rrange: f[x](x∈I) icompact: icompact(I) r-ap: f(x) rfun: I ⟶ℝ interval: Interval inf: inf(A) b real: all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  so_apply: x[s] uimplies: supposing a so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: squash: T sq_stable: SqStable(P) implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  icompact_wf interval_wf ifun_wf rfun_wf set_wf sq_stable__icompact ifun-continuous inf-range
Rules used in proof :  independent_isectElimination lambdaEquality isectElimination imageElimination baseClosed imageMemberEquality sqequalRule because_Cache independent_functionElimination hypothesis rename setElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f:\{f:I  {}\mrightarrow{}\mBbbR{}|  ifun(f;I)\}  .    \mexists{}y:\mBbbR{}.  inf(f(x)(x\mmember{}I))  =  y



Date html generated: 2018_07_29-AM-09_42_17
Last ObjectModification: 2018_06_29-PM-04_31_44

Theory : reals


Home Index