Nuprl Lemma : infinity-norm-rneq-real-vec-sep

n:ℕ+. ∀x,v:ℝ^n.  (||v||∞ ≠ ||x||∞  x ≠ v)


Proof




Definitions occuring in Statement :  real-vec-infinity-norm: ||v||∞ real-vec-sep: a ≠ b real-vec: ^n rneq: x ≠ y nat_plus: + all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k real-vec: ^n so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q subtype_rel: A ⊆B iff: ⇐⇒ Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtract: m nequal: a ≠ b ∈  eq_int: (i =z j) rless: x < y sq_exists: x:A [B[x]]

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,v:\mBbbR{}\^{}n.    (||v||\minfty{}  \mneq{}  ||x||\minfty{}  {}\mRightarrow{}  x  \mneq{}  v)



Date html generated: 2020_05_20-PM-00_48_08
Last ObjectModification: 2019_11_11-PM-09_16_11

Theory : reals


Home Index