Step
*
of Lemma
infinity-norm-rneq-real-vec-sep
No Annotations
∀n:ℕ+. ∀x,v:ℝ^n. (||v||∞ ≠ ||x||∞
⇒ x ≠ v)
BY
{ ((RWO "real-vec-sep-iff" 0 THENA Auto)
THEN InductionOnNat
THEN Auto
THEN (RWO "real-vec-infinity-norm-req" (-1) THENA Auto)
THEN Reduce -1
THEN (OReduce (-1) THENA Auto)) }
1
1. n : ℕ+
2. x : ℝ^1
3. v : ℝ^1
4. |v 0| ≠ |x 0|
⊢ ∃i:ℕ1. (r0 < |(x i) - v i|)
2
1. n : ℤ
2. 0 < n
3. ∀x,v:ℝ^n. (||v||∞ ≠ ||x||∞
⇒ (∃i:ℕn. (r0 < |(x i) - v i|)))
4. x : ℝ^n + 1
5. v : ℝ^n + 1
6. rmax(||v||∞;|v ((n + 1) - 1)|) ≠ rmax(||x||∞;|x ((n + 1) - 1)|)
⊢ ∃i:ℕn + 1. (r0 < |(x i) - v i|)
Latex:
Latex:
No Annotations
\mforall{}n:\mBbbN{}\msupplus{}. \mforall{}x,v:\mBbbR{}\^{}n. (||v||\minfty{} \mneq{} ||x||\minfty{} {}\mRightarrow{} x \mneq{} v)
By
Latex:
((RWO "real-vec-sep-iff" 0 THENA Auto)
THEN InductionOnNat
THEN Auto
THEN (RWO "real-vec-infinity-norm-req" (-1) THENA Auto)
THEN Reduce -1
THEN (OReduce (-1) THENA Auto))
Home
Index