Step
*
1
of Lemma
infinity-norm-rneq-real-vec-sep
1. n : ℕ+
2. x : ℝ^1
3. v : ℝ^1
4. |v 0| ≠ |x 0|
⊢ ∃i:ℕ1. (r0 < |(x i) - v i|)
BY
{ ((FLemma `rabs-rneq` [-1] THENA Auto) THEN D 0 With ⌜0⌝  THEN Auto THEN RWO "rneq-iff-rabs<" 0 THEN Auto) }
Latex:
Latex:
1.  n  :  \mBbbN{}\msupplus{}
2.  x  :  \mBbbR{}\^{}1
3.  v  :  \mBbbR{}\^{}1
4.  |v  0|  \mneq{}  |x  0|
\mvdash{}  \mexists{}i:\mBbbN{}1.  (r0  <  |(x  i)  -  v  i|)
By
Latex:
((FLemma  `rabs-rneq`  [-1]  THENA  Auto)
  THEN  D  0  With  \mkleeneopen{}0\mkleeneclose{} 
  THEN  Auto
  THEN  RWO  "rneq-iff-rabs<"  0
  THEN  Auto)
Home
Index