Step
*
2
1
1
1
of Lemma
infn-rleq
1. I : {I:Interval| icompact(I)}
2. n : ℤ
3. 0 < n
4. ∀f:{f:I^n - 1 ⟶ ℝ| ∀a,b:I^n - 1. (req-vec(n - 1;a;b)
⇒ ((f a) = (f b)))} . ∀x:I^n - 1. ((infn(n - 1;I) f) ≤ (f x)\000C)
5. f : I^n ⟶ ℝ
6. ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))
7. x : I^n
8. z : {x:ℝ| x ∈ I}
9. a : I^n - 1
10. b : I^n - 1
11. req-vec(n - 1;a;b)
⊢ req-vec(n;a++z;b++z)
BY
{ (RWO "req-vec-extend" 0 THEN Auto THEN RelRST THEN Auto) }
Latex:
Latex:
1. I : \{I:Interval| icompact(I)\}
2. n : \mBbbZ{}
3. 0 < n
4. \mforall{}f:\{f:I\^{}n - 1 {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n - 1. (req-vec(n - 1;a;b) {}\mRightarrow{} ((f a) = (f b)))\} . \mforall{}x:I\^{}n - 1.
((infn(n - 1;I) f) \mleq{} (f x))
5. f : I\^{}n {}\mrightarrow{} \mBbbR{}
6. \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} ((f a) = (f b)))
7. x : I\^{}n
8. z : \{x:\mBbbR{}| x \mmember{} I\}
9. a : I\^{}n - 1
10. b : I\^{}n - 1
11. req-vec(n - 1;a;b)
\mvdash{} req-vec(n;a++z;b++z)
By
Latex:
(RWO "req-vec-extend" 0 THEN Auto THEN RelRST THEN Auto)
Home
Index