Nuprl Lemma : infn_wf

[I:{I:Interval| icompact(I)} ]
  ∀n:ℕ
    (infn(n;I) ∈ {F:{f:I^n ⟶ ℝ| ∀a,b:I^n.  (req-vec(n;a;b)  ((f a) (f b)))}  ⟶ ℝ
                  ∀f,g:{f:I^n ⟶ ℝ| ∀a,b:I^n.  (req-vec(n;a;b)  ((f a) (f b)))} .
                    ((∀x:I^n. ((f x) (g x)))  ((F f) (F g)))} )


Proof




Definitions occuring in Statement :  infn: infn(n;I) interval-vec: I^n req-vec: req-vec(n;x;y) icompact: icompact(I) interval: Interval req: y real: nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  infn: infn(n;I) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} real-vec: ^n interval-vec: I^n subtype_rel: A ⊆B top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) subtract: m sq_stable: SqStable(P) squash: T nat_plus: + cand: c∧ B rev_uimplies: rev_uimplies(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] real-vec-extend: a++z req-vec: req-vec(n;x;y)

Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ]
    \mforall{}n:\mBbbN{}
        (infn(n;I)  \mmember{}  \{F:\{f:I\^{}n  {}\mrightarrow{}  \mBbbR{}|  \mforall{}a,b:I\^{}n.    (req-vec(n;a;b)  {}\mRightarrow{}  ((f  a)  =  (f  b)))\}    {}\mrightarrow{}  \mBbbR{}| 
                                    \mforall{}f,g:\{f:I\^{}n  {}\mrightarrow{}  \mBbbR{}|  \mforall{}a,b:I\^{}n.    (req-vec(n;a;b)  {}\mRightarrow{}  ((f  a)  =  (f  b)))\}  .
                                        ((\mforall{}x:I\^{}n.  ((f  x)  =  (g  x)))  {}\mRightarrow{}  ((F  f)  =  (F  g)))\}  )



Date html generated: 2020_05_20-PM-00_38_31
Last ObjectModification: 2020_01_07-AM-10_26_58

Theory : reals


Home Index