Step
*
of Lemma
infn_wf
No Annotations
∀[I:{I:Interval| icompact(I)} ]
∀n:ℕ
(infn(n;I) ∈ {F:{f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))} ⟶ ℝ|
∀f,g:{f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))} .
((∀x:I^n. ((f x) = (g x)))
⇒ ((F f) = (F g)))} )
BY
{ (Unfold `infn` 0 THEN InductionOnNat THEN Reduce 0) }
1
1. I : {I:Interval| icompact(I)}
2. n : ℤ
⊢ λf.(f ⋅) ∈ {F:{f:I^0 ⟶ ℝ| ∀a,b:I^0. (req-vec(0;a;b)
⇒ ((f a) = (f b)))} ⟶ ℝ|
∀f,g:{f:I^0 ⟶ ℝ| ∀a,b:I^0. (req-vec(0;a;b)
⇒ ((f a) = (f b)))} .
((∀x:I^0. ((f x) = (g x)))
⇒ ((F f) = (F g)))}
2
.....upcase.....
1. I : {I:Interval| icompact(I)}
2. n : ℤ
3. 0 < n
4. primrec(n - 1;λf.(f ⋅);λi,r,f. inf{r (λa.(f a++z)) | z ∈ I}) ∈ {F:{f:I^n - 1 ⟶ ℝ|
∀a,b:I^n - 1. (req-vec(n - 1;a;b)
⇒ ((f a) = (f b)))}
⟶ ℝ|
∀f,g:{f:I^n - 1 ⟶ ℝ|
∀a,b:I^n - 1.
(req-vec(n - 1;a;b)
⇒ ((f a) = (f b)))} .
((∀x:I^n - 1. ((f x) = (g x)))
⇒ ((F f) = (F g)))}
⊢ primrec(n;λf.(f ⋅);λi,r,f. inf{r (λa.(f a++z)) | z ∈ I}) ∈ {F:{f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b\000C)))}
⟶ ℝ|
∀f,g:{f:I^n ⟶ ℝ|
∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))} .
((∀x:I^n. ((f x) = (g x)))
⇒ ((F f) = (F g)))}
Latex:
Latex:
No Annotations
\mforall{}[I:\{I:Interval| icompact(I)\} ]
\mforall{}n:\mBbbN{}
(infn(n;I) \mmember{} \{F:\{f:I\^{}n {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} ((f a) = (f b)))\} {}\mrightarrow{} \mBbbR{}|
\mforall{}f,g:\{f:I\^{}n {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} ((f a) = (f b)))\} .
((\mforall{}x:I\^{}n. ((f x) = (g x))) {}\mRightarrow{} ((F f) = (F g)))\} )
By
Latex:
(Unfold `infn` 0 THEN InductionOnNat THEN Reduce 0)
Home
Index