Step
*
2
2
1
of Lemma
inhabited-covers-reals-implies
.....antecedent.....
1. ∃c:ℝ
(((r0 ≤ c) ∧ (c < r1))
∧ (∀[A,B:ℝ ⟶ ℙ].
((∀r:ℝ. (A[r] ∨ B[r]))
⇒ (∀a,b:ℝ.
(((A a) ∧ (B b) ∧ (a ≤ b))
⇒ (∃a',b':ℝ. ((A a') ∧ (B b') ∧ (a ≤ a') ∧ (a' ≤ b') ∧ (b' ≤ b) ∧ ((b' - a') ≤ ((b - a) * c)))))))))
2. [A] : ℝ ⟶ ℙ
3. [B] : ℝ ⟶ ℙ
4. ∃a:ℝ. A[a]
5. ∃b:ℝ. B[b]
6. ∀r:ℝ. (A[r] ∨ B[r])
7. a : ℝ
8. b : ℝ
9. A a
10. B b
11. a ≤ b
⊢ ∃c:ℝ
(((r0 ≤ c) ∧ (c < r1))
∧ (∀a,b:ℝ.
(((A a) ∧ (B b) ∧ (a ≤ b))
⇒ (∃a',b':ℝ. ((A a') ∧ (B b') ∧ (a ≤ a') ∧ (a' ≤ b') ∧ (b' ≤ b) ∧ ((b' - a') ≤ ((b - a) * c)))))))
BY
{ (ParallelOp 1 THEN ParallelOp 2 THEN InstHyp [⌜A⌝;⌜B⌝] 3⋅ THEN Auto) }
Latex:
Latex:
.....antecedent.....
1. \mexists{}c:\mBbbR{}
(((r0 \mleq{} c) \mwedge{} (c < r1))
\mwedge{} (\mforall{}[A,B:\mBbbR{} {}\mrightarrow{} \mBbbP{}].
((\mforall{}r:\mBbbR{}. (A[r] \mvee{} B[r]))
{}\mRightarrow{} (\mforall{}a,b:\mBbbR{}.
(((A a) \mwedge{} (B b) \mwedge{} (a \mleq{} b))
{}\mRightarrow{} (\mexists{}a',b':\mBbbR{}
((A a')
\mwedge{} (B b')
\mwedge{} (a \mleq{} a')
\mwedge{} (a' \mleq{} b')
\mwedge{} (b' \mleq{} b)
\mwedge{} ((b' - a') \mleq{} ((b - a) * c)))))))))
2. [A] : \mBbbR{} {}\mrightarrow{} \mBbbP{}
3. [B] : \mBbbR{} {}\mrightarrow{} \mBbbP{}
4. \mexists{}a:\mBbbR{}. A[a]
5. \mexists{}b:\mBbbR{}. B[b]
6. \mforall{}r:\mBbbR{}. (A[r] \mvee{} B[r])
7. a : \mBbbR{}
8. b : \mBbbR{}
9. A a
10. B b
11. a \mleq{} b
\mvdash{} \mexists{}c:\mBbbR{}
(((r0 \mleq{} c) \mwedge{} (c < r1))
\mwedge{} (\mforall{}a,b:\mBbbR{}.
(((A a) \mwedge{} (B b) \mwedge{} (a \mleq{} b))
{}\mRightarrow{} (\mexists{}a',b':\mBbbR{}
((A a') \mwedge{} (B b') \mwedge{} (a \mleq{} a') \mwedge{} (a' \mleq{} b') \mwedge{} (b' \mleq{} b) \mwedge{} ((b' - a') \mleq{} ((b - a) * c)))))))
By
Latex:
(ParallelOp 1 THEN ParallelOp 2 THEN InstHyp [\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{}] 3\mcdot{} THEN Auto)
Home
Index