Nuprl Lemma : inhabited-covers-reals-implies
∀[A,B:ℝ ⟶ ℙ].
  ((∃a:ℝ. A[a])
  ⇒ (∃b:ℝ. B[b])
  ⇒ (∀r:ℝ. (A[r] ∨ B[r]))
  ⇒ (∃f,g:ℕ ⟶ ℝ. ∃x:ℝ. ((∀n:ℕ. A[f n]) ∧ (∀n:ℕ. B[g n]) ∧ lim n→∞.f n = x ∧ lim n→∞.g n = x)))
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y, 
real: ℝ, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
exists: ∃x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
prop: ℙ, 
cand: A c∧ B, 
nat_plus: ℕ+, 
uiff: uiff(P;Q), 
le: A ≤ B, 
false: False, 
not: ¬A, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
top: Top, 
member-closure: y ∈ closure(A)
Lemmas referenced : 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
rleq-int-fractions2, 
less_than_wf, 
false_wf, 
rless-int-fractions3, 
real_wf, 
rleq_wf, 
all_wf, 
or_wf, 
uall_wf, 
exists_wf, 
rsub_wf, 
rmul_wf, 
ravg-weak-between, 
ravg-dist, 
ravg_wf, 
rleq_weakening_equal, 
rabs_wf, 
rabs-of-nonneg, 
rleq-implies-rleq, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
req_functionality, 
rabs-difference-symmetry, 
req_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rleq_functionality, 
req_inversion, 
rleq_weakening, 
itermMultiply_wf, 
rmul_functionality, 
real_term_value_mul_lemma, 
rless-cases, 
rleq_weakening_rless, 
closures-meet, 
nat_wf, 
converges-to_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_pairFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
dependent_set_memberEquality, 
lambdaFormation, 
multiplyEquality, 
isect_memberFormation, 
productEquality, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
instantiate, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
inlFormation, 
promote_hyp, 
rename
Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}a:\mBbbR{}.  A[a])
    {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  B[b])
    {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (A[r]  \mvee{}  B[r]))
    {}\mRightarrow{}  (\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mexists{}x:\mBbbR{}.  ((\mforall{}n:\mBbbN{}.  A[f  n])  \mwedge{}  (\mforall{}n:\mBbbN{}.  B[g  n])  \mwedge{}  lim  n\mrightarrow{}\minfty{}.f  n  =  x  \mwedge{}  lim  n\mrightarrow{}\minfty{}.g  n  =  x)))
Date html generated:
2017_10_03-AM-10_04_00
Last ObjectModification:
2017_09_28-PM-06_22_59
Theory : reals
Home
Index