Step
*
2
of Lemma
int-rdiv-int-rmul
1. k : ℤ-o
2. ¬k < 0
3. a : ℕ+ ⟶ ℤ
4. regular-seq(a)
5. n : ℕ+
6. 0 < k
⊢ |(a (k * n)) - a (k * n) rem k - k * (a n)| ≤ (|k| * 4)
BY
{ (Decide ⌜2 ≤ k⌝⋅ THENA Auto) }
1
1. k : ℤ-o
2. ¬k < 0
3. a : ℕ+ ⟶ ℤ
4. regular-seq(a)
5. n : ℕ+
6. 0 < k
7. 2 ≤ k
⊢ |(a (k * n)) - a (k * n) rem k - k * (a n)| ≤ (|k| * 4)
2
1. k : ℤ-o
2. ¬k < 0
3. a : ℕ+ ⟶ ℤ
4. regular-seq(a)
5. n : ℕ+
6. 0 < k
7. ¬(2 ≤ k)
⊢ |(a (k * n)) - a (k * n) rem k - k * (a n)| ≤ (|k| * 4)
Latex:
Latex:
1. k : \mBbbZ{}\msupminus{}\msupzero{}
2. \mneg{}k < 0
3. a : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. regular-seq(a)
5. n : \mBbbN{}\msupplus{}
6. 0 < k
\mvdash{} |(a (k * n)) - a (k * n) rem k - k * (a n)| \mleq{} (|k| * 4)
By
Latex:
(Decide \mkleeneopen{}2 \mleq{} k\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index