Step
*
of Lemma
int-rdiv_wf
No Annotations
∀[k:ℤ-o]. ∀[a:ℝ]. ((a)/k ∈ ℝ)
BY
{ (Auto
THEN (D -1 THEN Unfold `int-rdiv` 0 THEN (CallByValueReduce 0 THENA Auto))
THEN MemTypeCD
THEN Auto
THEN Try (ProveWfLemma)
THEN ParallelLast
THEN Reduce 0
THEN Auto
THEN (Decide ⌜|k| ≤ 1⌝⋅ THENA Auto)) }
1
1. k : ℤ-o
2. a : ℕ+ ⟶ ℤ
3. ∀n,m:ℕ+. (|(m * (a n)) - n * (a m)| ≤ ((2 * 1) * (n + m)))
4. n : ℕ+
5. m : ℕ+
6. |k| ≤ 1
⊢ |(m * ((a n) ÷ k)) - n * ((a m) ÷ k)| ≤ (2 * (n + m))
2
1. k : ℤ-o
2. a : ℕ+ ⟶ ℤ
3. ∀n,m:ℕ+. (|(m * (a n)) - n * (a m)| ≤ ((2 * 1) * (n + m)))
4. n : ℕ+
5. m : ℕ+
6. ¬(|k| ≤ 1)
⊢ |(m * ((a n) ÷ k)) - n * ((a m) ÷ k)| ≤ (2 * (n + m))
Latex:
Latex:
No Annotations
\mforall{}[k:\mBbbZ{}\msupminus{}\msupzero{}]. \mforall{}[a:\mBbbR{}]. ((a)/k \mmember{} \mBbbR{})
By
Latex:
(Auto
THEN (D -1 THEN Unfold `int-rdiv` 0 THEN (CallByValueReduce 0 THENA Auto))
THEN MemTypeCD
THEN Auto
THEN Try (ProveWfLemma)
THEN ParallelLast
THEN Reduce 0
THEN Auto
THEN (Decide \mkleeneopen{}|k| \mleq{} 1\mkleeneclose{}\mcdot{} THENA Auto))
Home
Index