Step
*
2
1
1
1
1
of Lemma
int-rdiv_wf
1. k : ℤ-o
2. a : ℕ+ ⟶ ℤ
3. ∀n,m:ℕ+. (|(m * (a n)) - n * (a m)| ≤ ((2 * 1) * (n + m)))
4. n : ℕ+
5. m : ℕ+
6. ¬(|k| ≤ 1)
7. r1 : ℤ
8. |r1| < |k|
9. (a n rem k) = r1 ∈ {r:ℤ| |r| < |k|}
10. r2 : ℤ
11. |r2| < |k|
12. (a m rem k) = r2 ∈ {r:ℤ| |r| < |k|}
13. ∀[a,b:ℤ]. (|a + b| ≤ (|a| + |b|))
14. |m| * |r1| < |m| * |k|
15. |n| * |r2| < |n| * |k|
⊢ (((2 * 1) * (n + m)) + (|n| * |r2|) + (|m| * |r1|)) ≤ (|k| * 2 * (n + m))
BY
{ ((RWO "-1 -2" 0 THENA Auto) THEN (GenConcl ⌜|k| = N ∈ {2...}⌝⋅ THENA Auto) THEN (RWO "absval_pos" 0 THENA Auto)) }
1
1. k : ℤ-o
2. a : ℕ+ ⟶ ℤ
3. ∀n,m:ℕ+. (|(m * (a n)) - n * (a m)| ≤ ((2 * 1) * (n + m)))
4. n : ℕ+
5. m : ℕ+
6. ¬(|k| ≤ 1)
7. r1 : ℤ
8. |r1| < |k|
9. (a n rem k) = r1 ∈ {r:ℤ| |r| < |k|}
10. r2 : ℤ
11. |r2| < |k|
12. (a m rem k) = r2 ∈ {r:ℤ| |r| < |k|}
13. ∀[a,b:ℤ]. (|a + b| ≤ (|a| + |b|))
14. |m| * |r1| < |m| * |k|
15. |n| * |r2| < |n| * |k|
16. N : {2...}
17. |k| = N ∈ {2...}
⊢ (((2 * 1) * (n + m)) + (n * N) + (m * N)) ≤ (N * 2 * (n + m))
Latex:
Latex:
1. k : \mBbbZ{}\msupminus{}\msupzero{}
2. a : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. \mforall{}n,m:\mBbbN{}\msupplus{}. (|(m * (a n)) - n * (a m)| \mleq{} ((2 * 1) * (n + m)))
4. n : \mBbbN{}\msupplus{}
5. m : \mBbbN{}\msupplus{}
6. \mneg{}(|k| \mleq{} 1)
7. r1 : \mBbbZ{}
8. |r1| < |k|
9. (a n rem k) = r1
10. r2 : \mBbbZ{}
11. |r2| < |k|
12. (a m rem k) = r2
13. \mforall{}[a,b:\mBbbZ{}]. (|a + b| \mleq{} (|a| + |b|))
14. |m| * |r1| < |m| * |k|
15. |n| * |r2| < |n| * |k|
\mvdash{} (((2 * 1) * (n + m)) + (|n| * |r2|) + (|m| * |r1|)) \mleq{} (|k| * 2 * (n + m))
By
Latex:
((RWO "-1 -2" 0 THENA Auto)
THEN (GenConcl \mkleeneopen{}|k| = N\mkleeneclose{}\mcdot{} THENA Auto)
THEN (RWO "absval\_pos" 0 THENA Auto))
Home
Index