Nuprl Lemma : int-rmul-is-positive

k:ℤ. ∀y:ℝ.  (r0 < ⇐⇒ (0 < k ∧ (r0 < y)) ∨ (k < 0 ∧ (y < r0)))


Proof




Definitions occuring in Statement :  rless: x < y int-rmul: k1 a int-to-real: r(n) real: less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q natural_number: $n int:
Definitions unfolded in proof :  uimplies: supposing a or: P ∨ Q rev_implies:  Q uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  int-rmul-req req_weakening rless_functionality rmul-is-positive rless-int iff_wf int-rmul_wf rmul_wf int-to-real_wf rless_wf less_than_wf or_wf real_wf
Rules used in proof :  impliesLevelFunctionality sqequalRule levelHypothesis independent_isectElimination orLevelFunctionality andLevelFunctionality independent_functionElimination dependent_functionElimination orFunctionality impliesFunctionality productElimination addLevel because_Cache hypothesisEquality natural_numberEquality productEquality thin isectElimination sqequalHypSubstitution independent_pairFormation intEquality hypothesis extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbZ{}.  \mforall{}y:\mBbbR{}.    (r0  <  k  *  y  \mLeftarrow{}{}\mRightarrow{}  (0  <  k  \mwedge{}  (r0  <  y))  \mvee{}  (k  <  0  \mwedge{}  (y  <  r0)))



Date html generated: 2016_11_11-AM-07_11_20
Last ObjectModification: 2016_11_10-PM-06_01_09

Theory : reals


Home Index