Nuprl Lemma : int-rmul-is-positive
∀k:ℤ. ∀y:ℝ.  (r0 < k * y 
⇐⇒ (0 < k ∧ (r0 < y)) ∨ (k < 0 ∧ (y < r0)))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
int-rmul: k1 * a
, 
int-to-real: r(n)
, 
real: ℝ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uimplies: b supposing a
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
int-rmul-req, 
req_weakening, 
rless_functionality, 
rmul-is-positive, 
rless-int, 
iff_wf, 
int-rmul_wf, 
rmul_wf, 
int-to-real_wf, 
rless_wf, 
less_than_wf, 
or_wf, 
real_wf
Rules used in proof : 
impliesLevelFunctionality, 
sqequalRule, 
levelHypothesis, 
independent_isectElimination, 
orLevelFunctionality, 
andLevelFunctionality, 
independent_functionElimination, 
dependent_functionElimination, 
orFunctionality, 
impliesFunctionality, 
productElimination, 
addLevel, 
because_Cache, 
hypothesisEquality, 
natural_numberEquality, 
productEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
intEquality, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbZ{}.  \mforall{}y:\mBbbR{}.    (r0  <  k  *  y  \mLeftarrow{}{}\mRightarrow{}  (0  <  k  \mwedge{}  (r0  <  y))  \mvee{}  (k  <  0  \mwedge{}  (y  <  r0)))
Date html generated:
2016_11_11-AM-07_11_20
Last ObjectModification:
2016_11_10-PM-06_01_09
Theory : reals
Home
Index