Nuprl Lemma : int-rmul-one

[a:ℝ]. (1 a)


Proof




Definitions occuring in Statement :  int-rmul: k1 a req: y real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  real_wf int-rmul_wf rmul_wf int-to-real_wf rmul-identity1 req_functionality int-rmul-req req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality because_Cache independent_isectElimination productElimination

Latex:
\mforall{}[a:\mBbbR{}].  (1  *  a  =  a)



Date html generated: 2019_10_29-AM-09_32_32
Last ObjectModification: 2018_08_27-PM-00_12_12

Theory : reals


Home Index