Nuprl Lemma : int-rmul-one
∀[a:ℝ]. (1 * a = a)
Proof
Definitions occuring in Statement : 
int-rmul: k1 * a
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
real_wf, 
int-rmul_wf, 
rmul_wf, 
int-to-real_wf, 
rmul-identity1, 
req_functionality, 
int-rmul-req, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[a:\mBbbR{}].  (1  *  a  =  a)
Date html generated:
2019_10_29-AM-09_32_32
Last ObjectModification:
2018_08_27-PM-00_12_12
Theory : reals
Home
Index