Step
*
1
of Lemma
integer-between-reals
1. a : ℝ
2. b : ℝ
3. r(2) ≤ (b - a)
4. a < (a + r1)
5. (a + r1) < b
6. ∀k:ℤ. ((a < r(k))
⇒ ((a < r(k - 1)) ∨ (r(k) < b)))
7. ∃u,v:ℤ. ((r(u) ≤ a) ∧ (a < r(v)))
⊢ ∃k:ℤ. ((a < r(k)) ∧ (r(k) < b))
BY
{ Assert ⌜∀d:ℕ. ∀u:ℤ. ((r(u) ≤ a)
⇒ (a < r(u + d))
⇒ (∃k:ℤ. ((a < r(k)) ∧ (r(k) < b))))⌝⋅ }
1
.....assertion.....
1. a : ℝ
2. b : ℝ
3. r(2) ≤ (b - a)
4. a < (a + r1)
5. (a + r1) < b
6. ∀k:ℤ. ((a < r(k))
⇒ ((a < r(k - 1)) ∨ (r(k) < b)))
7. ∃u,v:ℤ. ((r(u) ≤ a) ∧ (a < r(v)))
⊢ ∀d:ℕ. ∀u:ℤ. ((r(u) ≤ a)
⇒ (a < r(u + d))
⇒ (∃k:ℤ. ((a < r(k)) ∧ (r(k) < b))))
2
1. a : ℝ
2. b : ℝ
3. r(2) ≤ (b - a)
4. a < (a + r1)
5. (a + r1) < b
6. ∀k:ℤ. ((a < r(k))
⇒ ((a < r(k - 1)) ∨ (r(k) < b)))
7. ∃u,v:ℤ. ((r(u) ≤ a) ∧ (a < r(v)))
8. ∀d:ℕ. ∀u:ℤ. ((r(u) ≤ a)
⇒ (a < r(u + d))
⇒ (∃k:ℤ. ((a < r(k)) ∧ (r(k) < b))))
⊢ ∃k:ℤ. ((a < r(k)) ∧ (r(k) < b))
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. r(2) \mleq{} (b - a)
4. a < (a + r1)
5. (a + r1) < b
6. \mforall{}k:\mBbbZ{}. ((a < r(k)) {}\mRightarrow{} ((a < r(k - 1)) \mvee{} (r(k) < b)))
7. \mexists{}u,v:\mBbbZ{}. ((r(u) \mleq{} a) \mwedge{} (a < r(v)))
\mvdash{} \mexists{}k:\mBbbZ{}. ((a < r(k)) \mwedge{} (r(k) < b))
By
Latex:
Assert \mkleeneopen{}\mforall{}d:\mBbbN{}. \mforall{}u:\mBbbZ{}. ((r(u) \mleq{} a) {}\mRightarrow{} (a < r(u + d)) {}\mRightarrow{} (\mexists{}k:\mBbbZ{}. ((a < r(k)) \mwedge{} (r(k) < b))))\mkleeneclose{}\mcdot{}
Home
Index