Step * 1 1 1 2 1 1 of Lemma intermediate-value-theorem


1. Interval
2. I ⟶ℝ
3. f[x] continuous for x ∈ I
4. {x:ℝx ∈ I} 
5. {x:ℝx ∈ I} 
6. f(a) < f(b)
7. {y:ℝy ∈ [f(a), f(b)]} 
8. {e:ℝr0 < e} 
9. a < b
10. icompact([a, b])
11. [a, b] ⊆ 
12. mc |f[x] y| continuous for x ∈ [a, b]
13. inf{|f[x] y||x ∈ [a, b]} ≤ r0
14. lower-bound(|f[x] y|(x∈[a, b]);inf{|f[x] y||x ∈ [a, b]})
15. ∀e:ℝ((r0 < e)  (∃x:ℝ((x ∈ |f[x] y|(x∈[a, b])) ∧ (x < (inf{|f[x] y||x ∈ [a, b]} e)))))
16. : ℝ
17. : ℝ
18. a ≤ z
19. z ≤ b
20. |f(z) y| x
21. x < (inf{|f[x] y||x ∈ [a, b]} e)
⊢ |f(z) y| < e
BY
(RWO "-2" THENA Auto) }

1
1. Interval
2. I ⟶ℝ
3. f[x] continuous for x ∈ I
4. {x:ℝx ∈ I} 
5. {x:ℝx ∈ I} 
6. f(a) < f(b)
7. {y:ℝy ∈ [f(a), f(b)]} 
8. {e:ℝr0 < e} 
9. a < b
10. icompact([a, b])
11. [a, b] ⊆ 
12. mc |f[x] y| continuous for x ∈ [a, b]
13. inf{|f[x] y||x ∈ [a, b]} ≤ r0
14. lower-bound(|f[x] y|(x∈[a, b]);inf{|f[x] y||x ∈ [a, b]})
15. ∀e:ℝ((r0 < e)  (∃x:ℝ((x ∈ |f[x] y|(x∈[a, b])) ∧ (x < (inf{|f[x] y||x ∈ [a, b]} e)))))
16. : ℝ
17. : ℝ
18. a ≤ z
19. z ≤ b
20. |f(z) y| x
21. x < (inf{|f[x] y||x ∈ [a, b]} e)
⊢ x < e


Latex:


Latex:

1.  I  :  Interval
2.  f  :  I  {}\mrightarrow{}\mBbbR{}
3.  f[x]  continuous  for  x  \mmember{}  I
4.  a  :  \{x:\mBbbR{}|  x  \mmember{}  I\} 
5.  b  :  \{x:\mBbbR{}|  x  \mmember{}  I\} 
6.  f(a)  <  f(b)
7.  y  :  \{y:\mBbbR{}|  y  \mmember{}  [f(a),  f(b)]\} 
8.  e  :  \{e:\mBbbR{}|  r0  <  e\} 
9.  a  <  b
10.  icompact([a,  b])
11.  [a,  b]  \msubseteq{}  I 
12.  mc  :  |f[x]  -  y|  continuous  for  x  \mmember{}  [a,  b]
13.  inf\{|f[x]  -  y||x  \mmember{}  [a,  b]\}  \mleq{}  r0
14.  lower-bound(|f[x]  -  y|(x\mmember{}[a,  b]);inf\{|f[x]  -  y||x  \mmember{}  [a,  b]\})
15.  \mforall{}e:\mBbbR{}
            ((r0  <  e)  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}.  ((x  \mmember{}  |f[x]  -  y|(x\mmember{}[a,  b]))  \mwedge{}  (x  <  (inf\{|f[x]  -  y||x  \mmember{}  [a,  b]\}  +  e)))))
16.  x  :  \mBbbR{}
17.  z  :  \mBbbR{}
18.  a  \mleq{}  z
19.  z  \mleq{}  b
20.  |f(z)  -  y|  =  x
21.  x  <  (inf\{|f[x]  -  y||x  \mmember{}  [a,  b]\}  +  e)
\mvdash{}  |f(z)  -  y|  <  e


By


Latex:
(RWO  "-2"  0  THENA  Auto)




Home Index