Nuprl Lemma : interval-connected
∀I:Interval. Connected({x:ℝ| x ∈ I} )
Proof
Definitions occuring in Statement : 
connected: Connected(X)
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
connected: Connected(X)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uimplies: b supposing a
, 
top: Top
, 
subinterval: I ⊆ J 
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
all_wf, 
real_wf, 
i-member_wf, 
or_wf, 
exists_wf, 
req_wf, 
set_wf, 
interval_wf, 
closed-interval-connected, 
rmin_wf, 
rmax_wf, 
rmin-rmax-subinterval, 
sq_stable__i-member, 
subtype_rel_dep_function, 
rccint_wf, 
subtype_rel_sets, 
member_rccint_lemma, 
subtype_rel_self, 
sq_stable__rleq, 
rmin-rleq, 
rleq-rmax, 
rleq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
setEquality, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
because_Cache, 
dependent_set_memberEquality, 
functionEquality, 
universeEquality, 
cumulativity, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
instantiate, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
dependent_pairFormation, 
productEquality
Latex:
\mforall{}I:Interval.  Connected(\{x:\mBbbR{}|  x  \mmember{}  I\}  )
Date html generated:
2017_10_03-AM-10_12_16
Last ObjectModification:
2017_07_10-PM-05_40_57
Theory : reals
Home
Index