Nuprl Lemma : interval-connected

I:Interval. Connected({x:ℝx ∈ I} )


Proof




Definitions occuring in Statement :  connected: Connected(X) i-member: r ∈ I interval: Interval real: all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] connected: Connected(X) uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T uimplies: supposing a top: Top subinterval: I ⊆  and: P ∧ Q cand: c∧ B guard: {T}
Lemmas referenced :  all_wf real_wf i-member_wf or_wf exists_wf req_wf set_wf interval_wf closed-interval-connected rmin_wf rmax_wf rmin-rmax-subinterval sq_stable__i-member subtype_rel_dep_function rccint_wf subtype_rel_sets member_rccint_lemma subtype_rel_self sq_stable__rleq rmin-rleq rleq-rmax rleq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination setEquality hypothesis hypothesisEquality sqequalRule lambdaEquality setElimination rename applyEquality functionExtensionality because_Cache dependent_set_memberEquality functionEquality universeEquality cumulativity dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed imageElimination instantiate independent_isectElimination isect_memberEquality voidElimination voidEquality independent_pairFormation dependent_pairFormation productEquality

Latex:
\mforall{}I:Interval.  Connected(\{x:\mBbbR{}|  x  \mmember{}  I\}  )



Date html generated: 2017_10_03-AM-10_12_16
Last ObjectModification: 2017_07_10-PM-05_40_57

Theory : reals


Home Index