Step
*
1
1
of Lemma
interval-totally-bounded
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. e : ℝ
4. r0 < e
5. k : ℕ+
6. (r1/r(k)) < e
7. n : ℕ
8. r(-n) ≤ (b - a)
9. (b - a) ≤ r(n)
⊢ ∃k:ℕ+. ((b - a/r(k)) < e)
BY
{ CaseNat 0 `n' }
1
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. e : ℝ
4. r0 < e
5. k : ℕ+
6. (r1/r(k)) < e
7. n : ℕ
8. r(-n) ≤ (b - a)
9. (b - a) ≤ r(n)
10. n = 0 ∈ ℤ
⊢ ∃k:ℕ+. ((b - a/r(k)) < e)
2
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. e : ℝ
4. r0 < e
5. k : ℕ+
6. (r1/r(k)) < e
7. n : ℕ
8. r(-n) ≤ (b - a)
9. (b - a) ≤ r(n)
10. ¬(n = 0 ∈ ℤ)
⊢ ∃k:ℕ+. ((b - a/r(k)) < e)
Latex:
Latex:
1. a : \mBbbR{}
2. b : \{b:\mBbbR{}| a \mleq{} b\}
3. e : \mBbbR{}
4. r0 < e
5. k : \mBbbN{}\msupplus{}
6. (r1/r(k)) < e
7. n : \mBbbN{}
8. r(-n) \mleq{} (b - a)
9. (b - a) \mleq{} r(n)
\mvdash{} \mexists{}k:\mBbbN{}\msupplus{}. ((b - a/r(k)) < e)
By
Latex:
CaseNat 0 `n'
Home
Index