Step
*
2
1
of Lemma
least-upper-bound
1. [A] : Set(ℝ)
2. a : ℝ
3. a ∈ A
4. bounded-above(A)
5. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((a ∈ A) ∧ (x < a))) ∨ A ≤ y))
⊢ ∃b:ℝ. (A ≤ b ∧ b ∈ closure(A))
BY
{ Assert ⌜∃b:ℝ. (b ∈ closure(A) ∧ b ∈ closure(strict-upper-bounds(A)))⌝⋅ }
1
.....assertion.....
1. [A] : Set(ℝ)
2. a : ℝ
3. a ∈ A
4. bounded-above(A)
5. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((a ∈ A) ∧ (x < a))) ∨ A ≤ y))
⊢ ∃b:ℝ. (b ∈ closure(A) ∧ b ∈ closure(strict-upper-bounds(A)))
2
1. [A] : Set(ℝ)
2. a : ℝ
3. a ∈ A
4. bounded-above(A)
5. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((a ∈ A) ∧ (x < a))) ∨ A ≤ y))
6. ∃b:ℝ. (b ∈ closure(A) ∧ b ∈ closure(strict-upper-bounds(A)))
⊢ ∃b:ℝ. (A ≤ b ∧ b ∈ closure(A))
Latex:
Latex:
1. [A] : Set(\mBbbR{})
2. a : \mBbbR{}
3. a \mmember{} A
4. bounded-above(A)
5. \mforall{}x,y:\mBbbR{}. ((x < y) {}\mRightarrow{} ((\mexists{}a:\mBbbR{}. ((a \mmember{} A) \mwedge{} (x < a))) \mvee{} A \mleq{} y))
\mvdash{} \mexists{}b:\mBbbR{}. (A \mleq{} b \mwedge{} b \mmember{} closure(A))
By
Latex:
Assert \mkleeneopen{}\mexists{}b:\mBbbR{}. (b \mmember{} closure(A) \mwedge{} b \mmember{} closure(strict-upper-bounds(A)))\mkleeneclose{}\mcdot{}
Home
Index