Step
*
2
1
1
of Lemma
least-upper-bound
.....assertion.....
1. [A] : Set(ℝ)
2. a : ℝ
3. a ∈ A
4. bounded-above(A)
5. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((a ∈ A) ∧ (x < a))) ∨ A ≤ y))
⊢ ∃b:ℝ. (b ∈ closure(A) ∧ b ∈ closure(strict-upper-bounds(A)))
BY
{ (BLemma `closures-meet` THEN Auto) }
1
1. [A] : Set(ℝ)
2. a : ℝ
3. a ∈ A
4. bounded-above(A)
5. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((a ∈ A) ∧ (x < a))) ∨ A ≤ y))
⊢ ∃a,b:ℝ. ((A a) ∧ (strict-upper-bounds(A) b) ∧ (a ≤ b))
2
1. [A] : Set(ℝ)
2. a : ℝ
3. a ∈ A
4. bounded-above(A)
5. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((a ∈ A) ∧ (x < a))) ∨ A ≤ y))
⊢ ∃c:ℝ
(((r0 ≤ c) ∧ (c < r1))
∧ (∀a,b:ℝ.
(((A a) ∧ (strict-upper-bounds(A) b) ∧ (a ≤ b))
⇒ (∃a',b':ℝ
((A a') ∧ (strict-upper-bounds(A) b') ∧ (a ≤ a') ∧ (a' ≤ b') ∧ (b' ≤ b) ∧ ((b' - a') ≤ ((b - a) * c)))))))
Latex:
Latex:
.....assertion.....
1. [A] : Set(\mBbbR{})
2. a : \mBbbR{}
3. a \mmember{} A
4. bounded-above(A)
5. \mforall{}x,y:\mBbbR{}. ((x < y) {}\mRightarrow{} ((\mexists{}a:\mBbbR{}. ((a \mmember{} A) \mwedge{} (x < a))) \mvee{} A \mleq{} y))
\mvdash{} \mexists{}b:\mBbbR{}. (b \mmember{} closure(A) \mwedge{} b \mmember{} closure(strict-upper-bounds(A)))
By
Latex:
(BLemma `closures-meet` THEN Auto)
Home
Index