Step
*
1
1
2
of Lemma
m-regularize-mcauchy
1. X : Type
2. d : metric(X)
3. s : ℕ ⟶ X
4. k : ℕ+
5. n : ℕ
6. m : ℕn
7. (6 * k) ≤ n
8. (6 * k) ≤ m
9. v : ℕ(n + 1) + 1
10. v1 : ℕ(m + 1) + 1
11. v1 = 0 ∈ ℤ
⇐⇒ ∀n:ℕm + 1. m-not-reg(d;s;n) = ff
12. v = 0 ∈ ℤ
⇐⇒ ∀n:ℕn + 1. m-not-reg(d;s;n) = ff
13. (∀n:ℕv - 1. m-not-reg(d;s;n) = ff) ∧ m-not-reg(d;s;v - 1) = tt supposing 0 < v
14. 0 < v1
15. (∀n:ℕv1 - 1. m-not-reg(d;s;n) = ff) ∧ m-not-reg(d;s;v1 - 1) = tt
16. ¬(v1 = 1 ∈ ℤ)
⊢ mdist(d;if 0 <z v then s (v - 2) else s n fi ;if 0 <z v1 then s (v1 - 2) else s m fi ) ≤ (r1/r(k))
BY
{ (Subst' v ~ v1 0 THENM ((OReduce 0 THENA Auto) THEN RWO "mdist-same" 0 THEN Auto)) }
1
.....equality.....
1. X : Type
2. d : metric(X)
3. s : ℕ ⟶ X
4. k : ℕ+
5. n : ℕ
6. m : ℕn
7. (6 * k) ≤ n
8. (6 * k) ≤ m
9. v : ℕ(n + 1) + 1
10. v1 : ℕ(m + 1) + 1
11. v1 = 0 ∈ ℤ
⇐⇒ ∀n:ℕm + 1. m-not-reg(d;s;n) = ff
12. v = 0 ∈ ℤ
⇐⇒ ∀n:ℕn + 1. m-not-reg(d;s;n) = ff
13. (∀n:ℕv - 1. m-not-reg(d;s;n) = ff) ∧ m-not-reg(d;s;v - 1) = tt supposing 0 < v
14. 0 < v1
15. (∀n:ℕv1 - 1. m-not-reg(d;s;n) = ff) ∧ m-not-reg(d;s;v1 - 1) = tt
16. ¬(v1 = 1 ∈ ℤ)
⊢ v ~ v1
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. s : \mBbbN{} {}\mrightarrow{} X
4. k : \mBbbN{}\msupplus{}
5. n : \mBbbN{}
6. m : \mBbbN{}n
7. (6 * k) \mleq{} n
8. (6 * k) \mleq{} m
9. v : \mBbbN{}(n + 1) + 1
10. v1 : \mBbbN{}(m + 1) + 1
11. v1 = 0 \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}m + 1. m-not-reg(d;s;n) = ff
12. v = 0 \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}n + 1. m-not-reg(d;s;n) = ff
13. (\mforall{}n:\mBbbN{}v - 1. m-not-reg(d;s;n) = ff) \mwedge{} m-not-reg(d;s;v - 1) = tt supposing 0 < v
14. 0 < v1
15. (\mforall{}n:\mBbbN{}v1 - 1. m-not-reg(d;s;n) = ff) \mwedge{} m-not-reg(d;s;v1 - 1) = tt
16. \mneg{}(v1 = 1)
\mvdash{} mdist(d;if 0 <z v then s (v - 2) else s n fi ;if 0 <z v1 then s (v1 - 2) else s m fi ) \mleq{} (r1/r(k))
By
Latex:
(Subst' v \msim{} v1 0 THENM ((OReduce 0 THENA Auto) THEN RWO "mdist-same" 0 THEN Auto))
Home
Index