Step
*
1
1
of Lemma
m-regularize_wf_finite
1. X : Type
2. d : metric(X)
3. b : ℕ
4. s : ℕb ⟶ X
5. n : ℕb
6. 0 < first-m-not-reg(d;s;n + 1)
7. first-m-not-reg(d;s;n + 1) = 0 ∈ ℤ
⇐⇒ ∀n:ℕn + 1. m-not-reg(d;s;n) = ff
8. let i = first-m-not-reg(d;s;n + 1) - 1 in
(∀n:ℕi. m-not-reg(d;s;n) = ff) ∧ m-not-reg(d;s;i) = tt
⊢ first-m-not-reg(d;s;n + 1) - 2 ∈ ℕb
BY
{ ((MoveToConcl (-1) THEN MoveToConcl (-2))
THEN (GenConclTerm ⌜first-m-not-reg(d;s;n + 1)⌝⋅ THENA Auto)
THEN RepUR ``let`` 0
THEN CaseNat 1 `v'
THEN Auto) }
1
1. X : Type
2. d : metric(X)
3. b : ℕ
4. s : ℕb ⟶ X
5. n : ℕb
6. (first-m-not-reg(d;s;n + 1) = 0 ∈ ℤ)
⇒ (∀n:ℕn + 1. m-not-reg(d;s;n) = ff)
7. (first-m-not-reg(d;s;n + 1) = 0 ∈ ℤ)
⇐ ∀n:ℕn + 1. m-not-reg(d;s;n) = ff
8. v : ℕ(n + 1) + 1
9. first-m-not-reg(d;s;n + 1) = v ∈ ℕ(n + 1) + 1
10. v = 1 ∈ ℤ
11. 0 < 1
12. ∀n:ℕ1 - 1. m-not-reg(d;s;n) = ff
13. m-not-reg(d;s;1 - 1) = tt
⊢ 1 - 2 ∈ ℕb
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. b : \mBbbN{}
4. s : \mBbbN{}b {}\mrightarrow{} X
5. n : \mBbbN{}b
6. 0 < first-m-not-reg(d;s;n + 1)
7. first-m-not-reg(d;s;n + 1) = 0 \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}n + 1. m-not-reg(d;s;n) = ff
8. let i = first-m-not-reg(d;s;n + 1) - 1 in
(\mforall{}n:\mBbbN{}i. m-not-reg(d;s;n) = ff) \mwedge{} m-not-reg(d;s;i) = tt
\mvdash{} first-m-not-reg(d;s;n + 1) - 2 \mmember{} \mBbbN{}b
By
Latex:
((MoveToConcl (-1) THEN MoveToConcl (-2))
THEN (GenConclTerm \mkleeneopen{}first-m-not-reg(d;s;n + 1)\mkleeneclose{}\mcdot{} THENA Auto)
THEN RepUR ``let`` 0
THEN CaseNat 1 `v'
THEN Auto)
Home
Index