Nuprl Lemma : m-regularize_wf_finite
∀[X:Type]. ∀[d:metric(X)]. ∀[b:ℕ]. ∀[s:ℕb ⟶ X].  (m-regularize(d;s) ∈ ℕb ⟶ X)
Proof
Definitions occuring in Statement : 
m-regularize: m-regularize(d;s)
, 
metric: metric(X)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
m-regularize: m-regularize(d;s)
, 
has-value: (a)↓
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
let: let, 
sq_type: SQType(T)
, 
guard: {T}
, 
m-not-reg: m-not-reg(d;s;n)
, 
isl: isl(x)
, 
m-reg-test: m-reg-test(d;b;s;x)
, 
int-seg-case: int-seg-case(i;j;d)
, 
primrec: primrec(n;b;c)
, 
primtailrec: primtailrec(n;i;b;f)
Lemmas referenced : 
value-type-has-value, 
int_seg_wf, 
set-value-type, 
lelt_wf, 
istype-int, 
int-value-type, 
first-m-not-reg_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
zero-add, 
sq_stable__le, 
less-iff-le, 
add_functionality_wrt_le, 
le-add-cancel2, 
subtype_rel_self, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-nat, 
metric_wf, 
istype-universe, 
first-m-not-reg-property, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
subtract_wf, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
bool_wf, 
m-not-reg_wf, 
istype-less_than, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__lt, 
int_seg_subtype_nat, 
bfalse_wf, 
it_wf, 
unit_wf2, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
addEquality, 
hypothesisEquality, 
natural_numberEquality, 
independent_isectElimination, 
intEquality, 
because_Cache, 
dependent_set_memberEquality_alt, 
imageElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
lambdaFormation_alt, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
closedConclusion, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
equalityElimination, 
equalityIstype, 
axiomEquality, 
functionIsType, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
cumulativity, 
productIsType, 
applyLambdaEquality, 
sqequalBase, 
inrEquality_alt
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[b:\mBbbN{}].  \mforall{}[s:\mBbbN{}b  {}\mrightarrow{}  X].    (m-regularize(d;s)  \mmember{}  \mBbbN{}b  {}\mrightarrow{}  X)
Date html generated:
2019_10_30-AM-07_02_59
Last ObjectModification:
2019_10_03-PM-06_03_54
Theory : reals
Home
Index