Nuprl Lemma : m-regularize_wf_finite

[X:Type]. ∀[d:metric(X)]. ∀[b:ℕ]. ∀[s:ℕb ⟶ X].  (m-regularize(d;s) ∈ ℕb ⟶ X)


Proof




Definitions occuring in Statement :  m-regularize: m-regularize(d;s) metric: metric(X) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T m-regularize: m-regularize(d;s) has-value: (a)↓ int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] nat: less_than: a < b squash: T ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m sq_stable: SqStable(P) true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff let: let sq_type: SQType(T) guard: {T} m-not-reg: m-not-reg(d;s;n) isl: isl(x) m-reg-test: m-reg-test(d;b;s;x) int-seg-case: int-seg-case(i;j;d) primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f)
Lemmas referenced :  value-type-has-value int_seg_wf set-value-type lelt_wf istype-int int-value-type first-m-not-reg_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-commutes zero-add sq_stable__le less-iff-le add_functionality_wrt_le le-add-cancel2 subtype_rel_self lt_int_wf eqtt_to_assert assert_of_lt_int istype-nat metric_wf istype-universe first-m-not-reg-property decidable__equal_int subtype_base_sq int_subtype_base subtract_wf intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma bool_wf m-not-reg_wf istype-less_than intformeq_wf int_formula_prop_eq_lemma decidable__lt int_seg_subtype_nat bfalse_wf it_wf unit_wf2 btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule lambdaEquality_alt callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename productElimination hypothesis addEquality hypothesisEquality natural_numberEquality independent_isectElimination intEquality because_Cache dependent_set_memberEquality_alt imageElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType applyEquality lambdaFormation_alt minusEquality imageMemberEquality baseClosed closedConclusion equalityTransitivity equalitySymmetry inhabitedIsType equalityElimination equalityIstype axiomEquality functionIsType isectIsTypeImplies instantiate universeEquality cumulativity productIsType applyLambdaEquality sqequalBase inrEquality_alt

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[b:\mBbbN{}].  \mforall{}[s:\mBbbN{}b  {}\mrightarrow{}  X].    (m-regularize(d;s)  \mmember{}  \mBbbN{}b  {}\mrightarrow{}  X)



Date html generated: 2019_10_30-AM-07_02_59
Last ObjectModification: 2019_10_03-PM-06_03_54

Theory : reals


Home Index