Nuprl Lemma : mcompact_functionality_wrt_homeomorphic+

X,Y:Type. ∀d:metric(X). ∀d':metric(Y).  (homeomorphic+(Y;d';X;d)  mcompact(X;d)  mcompact(Y;d'))


Proof




Definitions occuring in Statement :  mcompact: mcompact(X;d) homeomorphic+: homeomorphic+(X;dX;Y;dY) metric: metric(X) all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q homeomorphic+: homeomorphic+(X;dX;Y;dY) exists: x:A. B[x] and: P ∧ Q sq_exists: x:A [B[x]] member: t ∈ T mcompact: mcompact(X;d) uall: [x:A]. B[x] iff: ⇐⇒ Q cand: c∧ B rev_implies:  Q prop: mcomplete: mcomplete(M) mk-metric-space: with d metric: metric(X) so_lambda: λ2x.t[x] so_apply: x[s] mfun: FUN(X ⟶ Y) mcauchy: mcauchy(d;n.x[n]) compose: g nat: nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top nequal: a ≠ b ∈  subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 mconverges: x[n]↓ as n→∞ mconverges-to: lim n→∞.x[n] y m-unif-cont: UC(f:X ⟶ Y) rless: x < y int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T sq_stable: SqStable(P)

Latex:
\mforall{}X,Y:Type.  \mforall{}d:metric(X).  \mforall{}d':metric(Y).
    (homeomorphic+(Y;d';X;d)  {}\mRightarrow{}  mcompact(X;d)  {}\mRightarrow{}  mcompact(Y;d'))



Date html generated: 2020_05_20-PM-00_01_24
Last ObjectModification: 2019_12_04-PM-06_54_06

Theory : reals


Home Index