Nuprl Lemma : mconverges-implies-mcauchy

[X:Type]. ∀[d:metric(X)]. ∀[x:ℕ ⟶ X].  (x[n]↓ as n→∞  mcauchy(d;n.x[n]))


Proof




Definitions occuring in Statement :  mconverges: x[n]↓ as n→∞ mcauchy: mcauchy(d;n.x[n]) metric: metric(X) nat: uall: [x:A]. B[x] so_apply: x[s] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q mconverges: x[n]↓ as n→∞ exists: x:A. B[x] mcauchy: mcauchy(d;n.x[n]) all: x:A. B[x] mconverges-to: lim n→∞.x[n] y member: t ∈ T nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False and: P ∧ Q prop: sq_exists: x:A [B[x]] rev_uimplies: rev_uimplies(P;Q) so_apply: x[s] rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat: ge: i ≥  rge: x ≥ y uiff: uiff(P;Q) metric: metric(X) so_lambda: λ2x.t[x] req_int_terms: t1 ≡ t2

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x:\mBbbN{}  {}\mrightarrow{}  X].    (x[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  {}\mRightarrow{}  mcauchy(d;n.x[n]))



Date html generated: 2020_05_20-AM-11_56_31
Last ObjectModification: 2019_12_14-PM-04_48_58

Theory : reals


Home Index