Nuprl Lemma : mdist-triangle-inequality1

[X:Type]. ∀[d:metric(X)]. ∀[x,y,z:X].  (mdist(d;x;z) ≤ (mdist(d;x;y) mdist(d;z;y)))


Proof




Definitions occuring in Statement :  mdist: mdist(d;x;y) metric: metric(X) rleq: x ≤ y radd: b uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mdist: mdist(d;x;y) metric: metric(X) sq_stable: SqStable(P) implies:  Q and: P ∧ Q squash: T rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B uimplies: supposing a guard: {T}
Lemmas referenced :  sq_stable__rleq radd_wf le_witness_for_triv metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination applyEquality hypothesisEquality hypothesis independent_functionElimination productElimination sqequalRule imageMemberEquality baseClosed imageElimination lambdaEquality_alt dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y,z:X].    (mdist(d;x;z)  \mleq{}  (mdist(d;x;y)  +  mdist(d;z;y)))



Date html generated: 2019_10_29-AM-10_58_16
Last ObjectModification: 2019_10_02-AM-09_40_02

Theory : reals


Home Index