Step
*
1
2
1
2
of Lemma
mean-value-for-bounded-derivative
1. I : Interval
2. iproper(I)
3. f : I ⟶ℝ
4. f' : I ⟶ℝ
5. ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f'[x] = f'[y]))
6. d(f[x])/dx = λx.f'[x] on I
7. c : ℝ
8. ∀x:{x:ℝ| x ∈ I} . (|f'[x]| ≤ c)
9. y : {x:ℝ| x ∈ I}
10. x : {x:ℝ| x ∈ I}
11. f'[x] continuous for x ∈ I
12. f[x] continuous for x ∈ I
13. e : {e:ℝ| r0 < e}
14. (y < x)
⇒ (|f[y] - f[x]| ≤ ((c * |y - x|) + e))
15. x < y
16. [x, y] ⊆ I
17. f'[x] continuous for x ∈ [x, y]
18. x@0 : ℝ
19. x@0 ∈ [x, y]
20. |f[y] - f[x] - f'[x@0] * (y - x)| ≤ e
⊢ |f[y] - f[x]| ≤ ((c * |y - x|) + e)
BY
{ ((Assert |f'[x@0]| ≤ c BY
Auto)
THEN (Assert |f'[x@0] * (y - x)| ≤ (c * |y - x|) BY
((GenConclTerm ⌜y - x⌝⋅ THENA Auto)
THEN (nRMul ⌜|v|⌝ (-3)⋅ THENA Auto)
THEN RWO "rabs-rmul" (0)
THEN Auto))
THEN (MoveToConcl (-1) THEN MoveToConcl (-2))
THEN (GenConclTerms Auto [⌜f'[x@0] * (y - x)⌝;⌜f[y] - f[x]⌝]⋅ THENA Auto)
THEN All Thin
THEN Auto) }
1
1. I : Interval
2. c : ℝ
3. y : {x:ℝ| x ∈ I}
4. x : {x:ℝ| x ∈ I}
5. e : {e:ℝ| r0 < e}
6. v : ℝ
7. v1 : ℝ
8. |v1 - v| ≤ e
9. |v| ≤ (c * |y - x|)
⊢ |v1| ≤ ((c * |y - x|) + e)
Latex:
Latex:
1. I : Interval
2. iproper(I)
3. f : I {}\mrightarrow{}\mBbbR{}
4. f' : I {}\mrightarrow{}\mBbbR{}
5. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x = y) {}\mRightarrow{} (f'[x] = f'[y]))
6. d(f[x])/dx = \mlambda{}x.f'[x] on I
7. c : \mBbbR{}
8. \mforall{}x:\{x:\mBbbR{}| x \mmember{} I\} . (|f'[x]| \mleq{} c)
9. y : \{x:\mBbbR{}| x \mmember{} I\}
10. x : \{x:\mBbbR{}| x \mmember{} I\}
11. f'[x] continuous for x \mmember{} I
12. f[x] continuous for x \mmember{} I
13. e : \{e:\mBbbR{}| r0 < e\}
14. (y < x) {}\mRightarrow{} (|f[y] - f[x]| \mleq{} ((c * |y - x|) + e))
15. x < y
16. [x, y] \msubseteq{} I
17. f'[x] continuous for x \mmember{} [x, y]
18. x@0 : \mBbbR{}
19. x@0 \mmember{} [x, y]
20. |f[y] - f[x] - f'[x@0] * (y - x)| \mleq{} e
\mvdash{} |f[y] - f[x]| \mleq{} ((c * |y - x|) + e)
By
Latex:
((Assert |f'[x@0]| \mleq{} c BY
Auto)
THEN (Assert |f'[x@0] * (y - x)| \mleq{} (c * |y - x|) BY
((GenConclTerm \mkleeneopen{}y - x\mkleeneclose{}\mcdot{} THENA Auto)
THEN (nRMul \mkleeneopen{}|v|\mkleeneclose{} (-3)\mcdot{} THENA Auto)
THEN RWO "rabs-rmul" (0)
THEN Auto))
THEN (MoveToConcl (-1) THEN MoveToConcl (-2))
THEN (GenConclTerms Auto [\mkleeneopen{}f'[x@0] * (y - x)\mkleeneclose{};\mkleeneopen{}f[y] - f[x]\mkleeneclose{}]\mcdot{} THENA Auto)
THEN All Thin
THEN Auto)
Home
Index