Step
*
of Lemma
meq_functionality
∀[X:Type]. ∀[d:metric(X)]. ∀[x1,x2,y1,y2:X].  (uiff(x1 ≡ y1;x2 ≡ y2)) supposing (y1 ≡ y2 and x1 ≡ x2)
BY
{ (Auto THEN (InstLemma `meq-equiv` [⌜X⌝;⌜d⌝]⋅ THENA Auto) THEN D -1 THEN Auto) }
1
1. X : Type
2. d : metric(X)
3. x1 : X
4. x2 : X
5. y1 : X
6. y2 : X
7. x1 ≡ x2
8. y1 ≡ y2
9. x1 ≡ y1
10. Refl(X;x,y.x ≡ y)
11. Sym(X;x,y.x ≡ y)
12. Trans(X;x,y.x ≡ y)
⊢ x2 ≡ y2
2
1. X : Type
2. d : metric(X)
3. x1 : X
4. x2 : X
5. y1 : X
6. y2 : X
7. x1 ≡ x2
8. y1 ≡ y2
9. x2 ≡ y2
10. Refl(X;x,y.x ≡ y)
11. Sym(X;x,y.x ≡ y)
12. Trans(X;x,y.x ≡ y)
⊢ x1 ≡ y1
Latex:
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x1,x2,y1,y2:X].
    (uiff(x1  \mequiv{}  y1;x2  \mequiv{}  y2))  supposing  (y1  \mequiv{}  y2  and  x1  \mequiv{}  x2)
By
Latex:
(Auto  THEN  (InstLemma  `meq-equiv`  [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{}]\mcdot{}  THENA  Auto)  THEN  D  -1  THEN  Auto)
Home
Index