Nuprl Lemma : meq_transitivity

[X:Type]. ∀[d:metric(X)]. ∀[x,y,z:X].  (x ≡ z) supposing (x ≡ and y ≡ z)


Proof




Definitions occuring in Statement :  meq: x ≡ y metric: metric(X) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a meq: x ≡ y metric: metric(X) implies:  Q prop: equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q guard: {T} trans: Trans(T;x,y.E[x; y]) all: x:A. B[x]
Lemmas referenced :  meq-equiv req_witness int-to-real_wf meq_wf metric_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule applyEquality setElimination rename natural_numberEquality independent_functionElimination universeIsType isect_memberEquality_alt because_Cache isectIsTypeImplies inhabitedIsType instantiate universeEquality productElimination dependent_functionElimination

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y,z:X].    (x  \mequiv{}  z)  supposing  (x  \mequiv{}  y  and  y  \mequiv{}  z)



Date html generated: 2019_10_29-AM-10_56_16
Last ObjectModification: 2019_10_02-AM-09_37_28

Theory : reals


Home Index