Nuprl Lemma : meq_weakening
∀[X:Type]. ∀[d:metric(X)]. ∀[x,y:X].  x ≡ y supposing x = y ∈ X
Proof
Definitions occuring in Statement : 
meq: x ≡ y, 
metric: metric(X), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
meq: x ≡ y, 
metric: metric(X)
Lemmas referenced : 
meq_wf, 
squash_wf, 
true_wf, 
metric_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
meq-same, 
req_witness, 
int-to-real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
setElimination, 
rename, 
equalityIstype, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y:X].    x  \mequiv{}  y  supposing  x  =  y
Date html generated:
2019_10_29-AM-10_55_56
Last ObjectModification:
2019_10_02-AM-09_37_11
Theory : reals
Home
Index