Step
*
1
1
of Lemma
metric-leq-complete
1. [X] : Type
2. [d1] : metric(X)
3. [d2] : metric(X)
4. d2 ≤ d1
5. ∀x:ℕ ⟶ X. ∀y:X. (lim n→∞.x[n] = y
⇒ lim n→∞.x[n] = y)
6. ∀x:ℕ ⟶ X. (mcauchy(d2;n.x n)
⇒ (∃y:ℕ ⟶ X. (subsequence(a,b.a ≡ b;n.x n;n.y n) ∧ mcauchy(d1;n.y n))))
7. ∀x:ℕ ⟶ X. (mcauchy(d1;n.x n)
⇒ x n↓ as n→∞)
8. x : ℕ ⟶ X
9. mcauchy(d2;n.x n)
10. y : ℕ ⟶ X
11. subsequence(a,b.a ≡ b;n.x n;n.y n)
12. mcauchy(d1;n.y n)
13. a : X
14. lim n→∞.y n = a
⊢ lim n→∞.x n = a
BY
{ (D 0 THEN Auto) }
1
1. [X] : Type
2. [d1] : metric(X)
3. [d2] : metric(X)
4. d2 ≤ d1
5. ∀x:ℕ ⟶ X. ∀y:X. (lim n→∞.x[n] = y
⇒ lim n→∞.x[n] = y)
6. ∀x:ℕ ⟶ X. (mcauchy(d2;n.x n)
⇒ (∃y:ℕ ⟶ X. (subsequence(a,b.a ≡ b;n.x n;n.y n) ∧ mcauchy(d1;n.y n))))
7. ∀x:ℕ ⟶ X. (mcauchy(d1;n.x n)
⇒ x n↓ as n→∞)
8. x : ℕ ⟶ X
9. mcauchy(d2;n.x n)
10. y : ℕ ⟶ X
11. subsequence(a,b.a ≡ b;n.x n;n.y n)
12. mcauchy(d1;n.y n)
13. a : X
14. lim n→∞.y n = a
15. k : ℕ+
⊢ ∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (mdist(d2;x n;a) ≤ (r1/r(k)))))]
Latex:
Latex:
1. [X] : Type
2. [d1] : metric(X)
3. [d2] : metric(X)
4. d2 \mleq{} d1
5. \mforall{}x:\mBbbN{} {}\mrightarrow{} X. \mforall{}y:X. (lim n\mrightarrow{}\minfty{}.x[n] = y {}\mRightarrow{} lim n\mrightarrow{}\minfty{}.x[n] = y)
6. \mforall{}x:\mBbbN{} {}\mrightarrow{} X
(mcauchy(d2;n.x n) {}\mRightarrow{} (\mexists{}y:\mBbbN{} {}\mrightarrow{} X. (subsequence(a,b.a \mequiv{} b;n.x n;n.y n) \mwedge{} mcauchy(d1;n.y n))))
7. \mforall{}x:\mBbbN{} {}\mrightarrow{} X. (mcauchy(d1;n.x n) {}\mRightarrow{} x n\mdownarrow{} as n\mrightarrow{}\minfty{})
8. x : \mBbbN{} {}\mrightarrow{} X
9. mcauchy(d2;n.x n)
10. y : \mBbbN{} {}\mrightarrow{} X
11. subsequence(a,b.a \mequiv{} b;n.x n;n.y n)
12. mcauchy(d1;n.y n)
13. a : X
14. lim n\mrightarrow{}\minfty{}.y n = a
\mvdash{} lim n\mrightarrow{}\minfty{}.x n = a
By
Latex:
(D 0 THEN Auto)
Home
Index