Nuprl Lemma : mfun-subtype
∀[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[A:Type].  FUN(X ⟶ A) ⊆r FUN(X ⟶ Y) supposing A ⊆r Y
Proof
Definitions occuring in Statement : 
mfun: FUN(X ⟶ Y)
, 
metric: metric(X)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
mfun: FUN(X ⟶ Y)
, 
is-mfun: f:FUN(X;Y)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
is-mfun_wf, 
mfun_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
universeIsType, 
extract_by_obid, 
isectElimination, 
because_Cache, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[A:Type].
    FUN(X  {}\mrightarrow{}  A)  \msubseteq{}r  FUN(X  {}\mrightarrow{}  Y)  supposing  A  \msubseteq{}r  Y
Date html generated:
2019_10_30-AM-06_21_16
Last ObjectModification:
2019_10_02-AM-09_57_24
Theory : reals
Home
Index