Nuprl Lemma : mfun-subtype

[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[A:Type].  FUN(X ⟶ A) ⊆FUN(X ⟶ Y) supposing A ⊆Y


Proof




Definitions occuring in Statement :  mfun: FUN(X ⟶ Y) metric: metric(X) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B mfun: FUN(X ⟶ Y) is-mfun: f:FUN(X;Y) all: x:A. B[x] prop:
Lemmas referenced :  is-mfun_wf mfun_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt functionExtensionality applyEquality hypothesisEquality hypothesis sqequalRule universeIsType extract_by_obid isectElimination because_Cache axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[A:Type].
    FUN(X  {}\mrightarrow{}  A)  \msubseteq{}r  FUN(X  {}\mrightarrow{}  Y)  supposing  A  \msubseteq{}r  Y



Date html generated: 2019_10_30-AM-06_21_16
Last ObjectModification: 2019_10_02-AM-09_57_24

Theory : reals


Home Index