Nuprl Lemma : msep-symm

[X:Type]. ∀d:metric(X). ∀x,y:X.  uiff(x y;y x)


Proof




Definitions occuring in Statement :  msep: y metric: metric(X) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  msep: y uall: [x:A]. B[x] all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T prop: iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  sq_stable__rless int-to-real_wf mdist_wf rless_wf metric_wf istype-universe rless_functionality req_weakening mdist-symm
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation_alt independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis hypothesisEquality independent_functionElimination imageMemberEquality baseClosed imageElimination universeIsType inhabitedIsType instantiate universeEquality because_Cache independent_isectElimination productElimination

Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}x,y:X.    uiff(x  \#  y;y  \#  x)



Date html generated: 2019_10_29-AM-11_01_23
Last ObjectModification: 2019_10_02-AM-09_42_35

Theory : reals


Home Index