Step
*
1
of Lemma
mtb-point-cantor-seq-regular
1. X : Type
2. d : metric(X)
3. B : ℕ ⟶ ℕ+
4. m2 : k:ℕ ⟶ ℕB k ⟶ X
5. m3 : X ⟶ k:ℕ ⟶ ℕB k
6. p : X
7. n : ℕ
8. m : ℕ
9. ∀k:ℕ. (mdist(d;p;m2 k (m3 p k)) ≤ (r1/r(k + 1)))
⊢ mdist(d;m2 n (m3 p n);m2 m (m3 p m)) ≤ ((r1/r(n + 1)) + (r1/r(m + 1)))
BY
{ (RWO "-1<" 0 THENA Auto) }
1
1. X : Type
2. d : metric(X)
3. B : ℕ ⟶ ℕ+
4. m2 : k:ℕ ⟶ ℕB k ⟶ X
5. m3 : X ⟶ k:ℕ ⟶ ℕB k
6. p : X
7. n : ℕ
8. m : ℕ
9. ∀k:ℕ. (mdist(d;p;m2 k (m3 p k)) ≤ (r1/r(k + 1)))
⊢ mdist(d;m2 n (m3 p n);m2 m (m3 p m)) ≤ (mdist(d;p;m2 n (m3 p n)) + mdist(d;p;m2 m (m3 p m)))
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. B : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
4. m2 : k:\mBbbN{} {}\mrightarrow{} \mBbbN{}B k {}\mrightarrow{} X
5. m3 : X {}\mrightarrow{} k:\mBbbN{} {}\mrightarrow{} \mBbbN{}B k
6. p : X
7. n : \mBbbN{}
8. m : \mBbbN{}
9. \mforall{}k:\mBbbN{}. (mdist(d;p;m2 k (m3 p k)) \mleq{} (r1/r(k + 1)))
\mvdash{} mdist(d;m2 n (m3 p n);m2 m (m3 p m)) \mleq{} ((r1/r(n + 1)) + (r1/r(m + 1)))
By
Latex:
(RWO "-1<" 0 THENA Auto)
Home
Index