Nuprl Lemma : mtb-point-cantor-seq-regular

[X:Type]. ∀[d:metric(X)].  ∀mtb:m-TB(X;d). ∀p:X.  m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;p)))


Proof




Definitions occuring in Statement :  m-k-regular: m-k-regular(d;k;s) mtb-point-cantor: mtb-point-cantor(mtb;p) mtb-seq: mtb-seq(mtb;s) m-TB: m-TB(X;d) metric: metric(X) uall: [x:A]. B[x] all: x:A. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] m-TB: m-TB(X;d) spreadn: spread3 mtb-point-cantor: mtb-point-cantor(mtb;p) mtb-seq: mtb-seq(mtb;s) m-k-regular: m-k-regular(d;k;s) member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q uimplies: supposing a nat: rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q implies:  Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y uiff: uiff(P;Q)
Lemmas referenced :  le_witness_for_triv istype-nat m-TB_wf metric_wf istype-universe mdist_wf radd_wf rdiv_wf int-to-real_wf rless-int nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf rless_wf rleq_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq mdist-triangle-inequality rleq_functionality req_weakening radd_functionality mdist-symm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution setElimination thin rename productElimination sqequalRule introduction cut dependent_functionElimination hypothesisEquality lambdaEquality_alt extract_by_obid isectElimination equalityTransitivity hypothesis equalitySymmetry independent_isectElimination functionIsTypeImplies inhabitedIsType universeIsType instantiate universeEquality applyEquality closedConclusion natural_numberEquality addEquality because_Cache inrFormation_alt independent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation equalityIstype

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].
    \mforall{}mtb:m-TB(X;d).  \mforall{}p:X.    m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;p)))



Date html generated: 2019_10_30-AM-07_04_29
Last ObjectModification: 2019_10_09-AM-09_20_05

Theory : reals


Home Index