Nuprl Lemma : mtb-point-cantor-seq-regular
∀[X:Type]. ∀[d:metric(X)].  ∀mtb:m-TB(X;d). ∀p:X.  m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;p)))
Proof
Definitions occuring in Statement : 
m-k-regular: m-k-regular(d;k;s), 
mtb-point-cantor: mtb-point-cantor(mtb;p), 
mtb-seq: mtb-seq(mtb;s), 
m-TB: m-TB(X;d), 
metric: metric(X), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
m-TB: m-TB(X;d), 
spreadn: spread3, 
mtb-point-cantor: mtb-point-cantor(mtb;p), 
mtb-seq: mtb-seq(mtb;s), 
m-k-regular: m-k-regular(d;k;s), 
member: t ∈ T, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
and: P ∧ Q, 
uimplies: b supposing a, 
nat: ℕ, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
ge: i ≥ j , 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
uiff: uiff(P;Q)
Lemmas referenced : 
le_witness_for_triv, 
istype-nat, 
m-TB_wf, 
metric_wf, 
istype-universe, 
mdist_wf, 
radd_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
rless_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
mdist-triangle-inequality, 
rleq_functionality, 
req_weakening, 
radd_functionality, 
mdist-symm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
introduction, 
cut, 
dependent_functionElimination, 
hypothesisEquality, 
lambdaEquality_alt, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
universeEquality, 
applyEquality, 
closedConclusion, 
natural_numberEquality, 
addEquality, 
because_Cache, 
inrFormation_alt, 
independent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityIstype
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].
    \mforall{}mtb:m-TB(X;d).  \mforall{}p:X.    m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;p)))
Date html generated:
2019_10_30-AM-07_04_29
Last ObjectModification:
2019_10_09-AM-09_20_05
Theory : reals
Home
Index