Step
*
1
1
1
2
of Lemma
mul-monomials-req
1. f : ℤ ⟶ ℝ
2. u : ℤ
3. v : ℤ List
4. ∀as:ℤ List. (real_term_value(f;imonomial-term(<1, merge-int(as;v)>)) = (real_term_value(f;imonomial-term(<1, as>)) * \000Creal_term_value(f;imonomial-term(<1, v>))))
⊢ ∀as:ℤ List. (real_term_value(f;imonomial-term(<1, merge-int(as;[u / v])>)) = (real_term_value(f;imonomial-term(<1, as>\000C)) * real_term_value(f;imonomial-term(<1, [u / v]>))))
BY
{ (Unfold `merge-int` 0
THEN Reduce 0
THEN Fold `merge-int` 0
THEN (ParallelLast THENA Auto)
THEN (RWO "imonomial-term-linear-req" 0 THENA Auto)) }
1
1. f : ℤ ⟶ ℝ
2. u : ℤ
3. v : ℤ List
4. ∀as:ℤ List. (real_term_value(f;imonomial-term(<1, merge-int(as;v)>)) = (real_term_value(f;imonomial-term(<1, as>)) * \000Creal_term_value(f;imonomial-term(<1, v>))))
5. as : ℤ List
6. real_term_value(f;imonomial-term(<1, merge-int(as;v)>)) = (real_term_value(f;imonomial-term(<1, as>)) * real_term_val\000Cue(f;imonomial-term(<1, v>)))
⊢ (r1 * real_term_value(f;imonomial-term(<1, insert-int(u;merge-int(as;v))>))) = ((r1 * real_term_value(f;imonomial-term\000C(<1, as>))) * r1 * real_term_value(f;imonomial-term(<1, [u / v]>)))
Latex:
Latex:
1. f : \mBbbZ{} {}\mrightarrow{} \mBbbR{}
2. u : \mBbbZ{}
3. v : \mBbbZ{} List
4. \mforall{}as:\mBbbZ{} List. (real\_term\_value(f;imonomial-term(ə, merge-int(as;v)>)) = (real\_term\_value(f;imonomi\000Cal-term(ə, as>)) * real\_term\_value(f;imonomial-term(ə, v>))))
\mvdash{} \mforall{}as:\mBbbZ{} List. (real\_term\_value(f;imonomial-term(ə, merge-int(as;[u / v])>)) = (real\_term\_value(f;im\000Conomial-term(ə, as>)) * real\_term\_value(f;imonomial-term(ə, [u / v]>))))
By
Latex:
(Unfold `merge-int` 0
THEN Reduce 0
THEN Fold `merge-int` 0
THEN (ParallelLast THENA Auto)
THEN (RWO "imonomial-term-linear-req" 0 THENA Auto))
Home
Index