Nuprl Lemma : mul-rinv-as-rdiv
∀[y,a:ℝ].  (a * rinv(y)) = (a/y) supposing y ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rinv: rinv(x)
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
rdiv: (x/y)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
req_weakening, 
rmul_wf, 
rinv_wf2, 
req_witness, 
rneq_wf, 
int-to-real_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[y,a:\mBbbR{}].    (a  *  rinv(y))  =  (a/y)  supposing  y  \mneq{}  r0
Date html generated:
2017_10_03-AM-08_34_20
Last ObjectModification:
2017_04_05-AM-09_48_05
Theory : reals
Home
Index