Nuprl Lemma : mul-rinv-as-rdiv

[y,a:ℝ].  (a rinv(y)) (a/y) supposing y ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y rinv: rinv(x) req: y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  rdiv: (x/y) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop:
Lemmas referenced :  req_weakening rmul_wf rinv_wf2 req_witness rneq_wf int-to-real_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache independent_isectElimination natural_numberEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[y,a:\mBbbR{}].    (a  *  rinv(y))  =  (a/y)  supposing  y  \mneq{}  r0



Date html generated: 2017_10_03-AM-08_34_20
Last ObjectModification: 2017_04_05-AM-09_48_05

Theory : reals


Home Index