Step
*
1
1
2
2
of Lemma
nearby-partition-choice
1. I : Interval@i
2. icompact(I)
3. p : partition(I)@i
4. q : partition(I)@i
5. e : {e:ℝ| r0 < e} @i
6. ||p|| = ||q|| ∈ ℤ
7. ∀i:ℕ||p||. (|p[i] - q[i]| ≤ e)
8. x : partition-choice(full-partition(I;p))@i
9. ||full-partition(I;p)|| = ||full-partition(I;q)|| ∈ ℤ
10. i : ℕ||full-partition(I;p)||@i
11. ¬(i = 0 ∈ ℤ)
⊢ |[left-endpoint(I) / (p @ [right-endpoint(I)])][i] - [left-endpoint(I) / (q @ [right-endpoint(I)])][i]| ≤ e
BY
{ Subst' ||full-partition(I;p)|| ~ ||p|| + 2 -2 }
1
.....equality.....
1. I : Interval@i
2. icompact(I)
3. p : partition(I)@i
4. q : partition(I)@i
5. e : {e:ℝ| r0 < e} @i
6. ||p|| = ||q|| ∈ ℤ
7. ∀i:ℕ||p||. (|p[i] - q[i]| ≤ e)
8. x : partition-choice(full-partition(I;p))@i
9. ||full-partition(I;p)|| = ||full-partition(I;q)|| ∈ ℤ
10. i : ℕ||full-partition(I;p)||@i
11. ¬(i = 0 ∈ ℤ)
⊢ ||full-partition(I;p)|| ~ ||p|| + 2
2
1. I : Interval@i
2. icompact(I)
3. p : partition(I)@i
4. q : partition(I)@i
5. e : {e:ℝ| r0 < e} @i
6. ||p|| = ||q|| ∈ ℤ
7. ∀i:ℕ||p||. (|p[i] - q[i]| ≤ e)
8. x : partition-choice(full-partition(I;p))@i
9. ||full-partition(I;p)|| = ||full-partition(I;q)|| ∈ ℤ
10. i : ℕ||p|| + 2@i
11. ¬(i = 0 ∈ ℤ)
⊢ |[left-endpoint(I) / (p @ [right-endpoint(I)])][i] - [left-endpoint(I) / (q @ [right-endpoint(I)])][i]| ≤ e
Latex:
Latex:
1. I : Interval@i
2. icompact(I)
3. p : partition(I)@i
4. q : partition(I)@i
5. e : \{e:\mBbbR{}| r0 < e\} @i
6. ||p|| = ||q||
7. \mforall{}i:\mBbbN{}||p||. (|p[i] - q[i]| \mleq{} e)
8. x : partition-choice(full-partition(I;p))@i
9. ||full-partition(I;p)|| = ||full-partition(I;q)||
10. i : \mBbbN{}||full-partition(I;p)||@i
11. \mneg{}(i = 0)
\mvdash{} |[left-endpoint(I) / (p @ [right-endpoint(I)])][i] - [left-endpoint(I) /
(q @ [right-endpoint(I)])][i]| \mleq{} e
By
Latex:
Subst' ||full-partition(I;p)|| \msim{} ||p|| + 2 -2
Home
Index