Step
*
1
1
1
1
2
1
1
of Lemma
nearby-separated-partitions
1. I : Interval@i
2. icompact(I)
3. iproper(I)
4. p : partition(I)@i
5. q : partition(I)@i
6. e : {e:ℝ| r0 < e} @i
7. q1 : partition(I)
8. frs-increasing(q1)
9. ||p|| = ||q1|| ∈ ℤ
10. ∀i:ℕ||p||. (|p[i] - q1[i]| ≤ e)
11. (e/r(2)) ∈ {e:ℝ| r0 < e}
12. r : partition(I)
13. frs-increasing(r)
14. ||q|| = ||r|| ∈ ℤ
15. ∀i:ℕ||q||. (|q[i] - r[i]| ≤ (e/r(2)))
16. q2 : partition(I)
17. frs-increasing(q2)
18. ||r|| = ||q2|| ∈ ℤ
19. ∀i:ℕ||r||. (|r[i] - q2[i]| ≤ (e/r(2)))
20. i : ℕ||q||@i
⊢ |q[i] - q2[i]| ≤ e
BY
{ ((InstHyp [⌜i⌝] (-6)⋅ THENA Auto) THEN (InstHyp [⌜i⌝] (-3)⋅ THENA Auto)) }
1
1. I : Interval@i
2. icompact(I)
3. iproper(I)
4. p : partition(I)@i
5. q : partition(I)@i
6. e : {e:ℝ| r0 < e} @i
7. q1 : partition(I)
8. frs-increasing(q1)
9. ||p|| = ||q1|| ∈ ℤ
10. ∀i:ℕ||p||. (|p[i] - q1[i]| ≤ e)
11. (e/r(2)) ∈ {e:ℝ| r0 < e}
12. r : partition(I)
13. frs-increasing(r)
14. ||q|| = ||r|| ∈ ℤ
15. ∀i:ℕ||q||. (|q[i] - r[i]| ≤ (e/r(2)))
16. q2 : partition(I)
17. frs-increasing(q2)
18. ||r|| = ||q2|| ∈ ℤ
19. ∀i:ℕ||r||. (|r[i] - q2[i]| ≤ (e/r(2)))
20. i : ℕ||q||@i
21. |q[i] - r[i]| ≤ (e/r(2))
22. |r[i] - q2[i]| ≤ (e/r(2))
⊢ |q[i] - q2[i]| ≤ e
Latex:
Latex:
1. I : Interval@i
2. icompact(I)
3. iproper(I)
4. p : partition(I)@i
5. q : partition(I)@i
6. e : \{e:\mBbbR{}| r0 < e\} @i
7. q1 : partition(I)
8. frs-increasing(q1)
9. ||p|| = ||q1||
10. \mforall{}i:\mBbbN{}||p||. (|p[i] - q1[i]| \mleq{} e)
11. (e/r(2)) \mmember{} \{e:\mBbbR{}| r0 < e\}
12. r : partition(I)
13. frs-increasing(r)
14. ||q|| = ||r||
15. \mforall{}i:\mBbbN{}||q||. (|q[i] - r[i]| \mleq{} (e/r(2)))
16. q2 : partition(I)
17. frs-increasing(q2)
18. ||r|| = ||q2||
19. \mforall{}i:\mBbbN{}||r||. (|r[i] - q2[i]| \mleq{} (e/r(2)))
20. i : \mBbbN{}||q||@i
\mvdash{} |q[i] - q2[i]| \mleq{} e
By
Latex:
((InstHyp [\mkleeneopen{}i\mkleeneclose{}] (-6)\mcdot{} THENA Auto) THEN (InstHyp [\mkleeneopen{}i\mkleeneclose{}] (-3)\mcdot{} THENA Auto))
Home
Index