Step
*
1
1
1
of Lemma
not-discontinuous
.....antecedent.....
1. f : ℝ ⟶ ℝ
2. ∀x,y:ℝ. ((x = y)
⇒ ((f x) = (f y)))
3. x : ℝ
4. epsilon : {e:ℝ| r0 < e}
5. ∀delta:{e:ℝ| r0 < e} . ∃y:ℝ. ((|x - y| < delta) ∧ (epsilon < |(f x) - f y|))
⊢ (x - r1) < (x + r1)
BY
{ (nRAdd ⌜r1 - x⌝ 0⋅ THEN Auto) }
Latex:
Latex:
.....antecedent.....
1. f : \mBbbR{} {}\mrightarrow{} \mBbbR{}
2. \mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} ((f x) = (f y)))
3. x : \mBbbR{}
4. epsilon : \{e:\mBbbR{}| r0 < e\}
5. \mforall{}delta:\{e:\mBbbR{}| r0 < e\} . \mexists{}y:\mBbbR{}. ((|x - y| < delta) \mwedge{} (epsilon < |(f x) - f y|))
\mvdash{} (x - r1) < (x + r1)
By
Latex:
(nRAdd \mkleeneopen{}r1 - x\mkleeneclose{} 0\mcdot{} THEN Auto)
Home
Index