Nuprl Lemma : not-real-vec-sep-refl
∀[n:ℕ]. ∀[a:ℝ^n].  (¬a ≠ a)
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
Lemmas referenced : 
real-vec-sep_wf, 
real-vec_wf, 
nat_wf, 
not-real-vec-sep-iff-eq, 
req-vec_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbR{}\^{}n].    (\mneg{}a  \mneq{}  a)
Date html generated:
2016_10_26-AM-10_30_28
Last ObjectModification:
2016_09_25-PM-02_12_30
Theory : reals
Home
Index