Nuprl Lemma : not-real-vec-sep-refl
∀[n:ℕ]. ∀[a:ℝ^n].  (¬a ≠ a)
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b, 
real-vec: ℝ^n, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a
Lemmas referenced : 
real-vec-sep_wf, 
real-vec_wf, 
nat_wf, 
not-real-vec-sep-iff-eq, 
req-vec_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbR{}\^{}n].    (\mneg{}a  \mneq{}  a)
 Date html generated: 
2016_10_26-AM-10_30_28
 Last ObjectModification: 
2016_09_25-PM-02_12_30
Theory : reals
Home
Index