Nuprl Lemma : not-real-vec-sep-refl

[n:ℕ]. ∀[a:ℝ^n].  a ≠ a)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec: ^n nat: uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False prop: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a
Lemmas referenced :  real-vec-sep_wf real-vec_wf nat_wf not-real-vec-sep-iff-eq req-vec_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache isect_memberEquality productElimination independent_isectElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbR{}\^{}n].    (\mneg{}a  \mneq{}  a)



Date html generated: 2016_10_26-AM-10_30_28
Last ObjectModification: 2016_09_25-PM-02_12_30

Theory : reals


Home Index