Nuprl Lemma : not-real-vec-sep-iff-eq
∀[n:ℕ]. ∀[a,b:ℝ^n].  uiff(¬a ≠ b;req-vec(n;a;b))
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
real-vec-sep: a ≠ b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
req-vec: req-vec(n;x;y)
, 
all: ∀x:A. B[x]
, 
real-vec: ℝ^n
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
false: False
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
req_witness, 
int_seg_wf, 
not_wf, 
rless_wf, 
int-to-real_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
req-vec_wf, 
real-vec_wf, 
nat_wf, 
not-rless, 
real-vec-dist-identity, 
rleq_antisymmetry, 
real-vec-dist-nonneg, 
nat_plus_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
rless_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
independent_functionElimination, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
voidElimination, 
because_Cache, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
imageElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbR{}\^{}n].    uiff(\mneg{}a  \mneq{}  b;req-vec(n;a;b))
Date html generated:
2016_10_26-AM-10_30_14
Last ObjectModification:
2016_09_25-AM-01_05_13
Theory : reals
Home
Index