Nuprl Lemma : not-real-vec-sep-iff-eq

[n:ℕ]. ∀[a,b:ℝ^n].  uiff(¬a ≠ b;req-vec(n;a;b))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b req-vec: req-vec(n;x;y) real-vec: ^n nat: uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  real-vec-sep: a ≠ b uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec: ^n implies:  Q nat: prop: subtype_rel: A ⊆B not: ¬A false: False rless: x < y sq_exists: x:{A| B[x]} nat_plus: + ge: i ≥  less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top iff: ⇐⇒ Q
Lemmas referenced :  req_witness int_seg_wf not_wf rless_wf int-to-real_wf real-vec-dist_wf real_wf rleq_wf req-vec_wf real-vec_wf nat_wf not-rless real-vec-dist-identity rleq_antisymmetry real-vec-dist-nonneg nat_plus_properties nat_properties satisfiable-full-omega-tt intformless_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf rless_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality independent_functionElimination hypothesis natural_numberEquality setElimination rename setEquality lambdaFormation voidElimination because_Cache productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination imageElimination dependent_pairFormation int_eqEquality intEquality voidEquality computeAll addLevel impliesFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbR{}\^{}n].    uiff(\mneg{}a  \mneq{}  b;req-vec(n;a;b))



Date html generated: 2016_10_26-AM-10_30_14
Last ObjectModification: 2016_09_25-AM-01_05_13

Theory : reals


Home Index