Nuprl Lemma : partition-mesh_wf

[I:Interval]. ∀[p:partition(I)]. (partition-mesh(I;p) ∈ ℝsupposing icompact(I)


Proof




Definitions occuring in Statement :  partition-mesh: partition-mesh(I;p) partition: partition(I) icompact: icompact(I) interval: Interval real: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a partition-mesh: partition-mesh(I;p) prop:
Lemmas referenced :  frs-mesh_wf full-partition_wf partition_wf icompact_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[I:Interval].  \mforall{}[p:partition(I)].  (partition-mesh(I;p)  \mmember{}  \mBbbR{})  supposing  icompact(I)



Date html generated: 2016_05_18-AM-08_56_30
Last ObjectModification: 2015_12_27-PM-11_37_42

Theory : reals


Home Index