Nuprl Lemma : partition-mesh_wf
∀[I:Interval]. ∀[p:partition(I)]. (partition-mesh(I;p) ∈ ℝ) supposing icompact(I)
Proof
Definitions occuring in Statement : 
partition-mesh: partition-mesh(I;p)
, 
partition: partition(I)
, 
icompact: icompact(I)
, 
interval: Interval
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
partition-mesh: partition-mesh(I;p)
, 
prop: ℙ
Lemmas referenced : 
frs-mesh_wf, 
full-partition_wf, 
partition_wf, 
icompact_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[I:Interval].  \mforall{}[p:partition(I)].  (partition-mesh(I;p)  \mmember{}  \mBbbR{})  supposing  icompact(I)
Date html generated:
2016_05_18-AM-08_56_30
Last ObjectModification:
2015_12_27-PM-11_37_42
Theory : reals
Home
Index