Step
*
3
1
2
2
2
of Lemma
partition-split-cons-mesh
1. I : Interval
2. icompact(I)
3. a : ℝ
4. bs : ℝ List
5. partitions(I;[a / bs])
6. partitions([left-endpoint(I), a];[])
7. partitions([a, right-endpoint(I)];bs)
8. partitions([left-endpoint(I), a];[])
9. partitions([a, right-endpoint(I)];bs)
10. left-endpoint(I) ≤ a
11. a ≤ right-endpoint(I)
12. partition-mesh([left-endpoint(I), a];[]) ≤ partition-mesh(I;[a / bs])
13. icompact([a, right-endpoint(I)])
14. i : ℕ||full-partition([a, right-endpoint(I)];bs)|| - 1
15. r0 ≤ (full-partition(I;[a / bs])[(i + 1) + 1] - full-partition(I;[a / bs])[i + 1])
16. (full-partition(I;[a / bs])[(i + 1) + 1] - full-partition(I;[a / bs])[i + 1]) ≤ partition-mesh(I;[a / bs])
⊢ full-partition([a, right-endpoint(I)];bs)[i] ~ full-partition(I;[a / bs])[i + 1]
BY
{ (RepUR ``full-partition`` 0
THEN (Subst' left-endpoint([a, right-endpoint(I)]) ~ a 0 THENA (RepUR ``left-endpoint endpoints`` 0 THEN Auto))
) }
1
1. I : Interval
2. icompact(I)
3. a : ℝ
4. bs : ℝ List
5. partitions(I;[a / bs])
6. partitions([left-endpoint(I), a];[])
7. partitions([a, right-endpoint(I)];bs)
8. partitions([left-endpoint(I), a];[])
9. partitions([a, right-endpoint(I)];bs)
10. left-endpoint(I) ≤ a
11. a ≤ right-endpoint(I)
12. partition-mesh([left-endpoint(I), a];[]) ≤ partition-mesh(I;[a / bs])
13. icompact([a, right-endpoint(I)])
14. i : ℕ||full-partition([a, right-endpoint(I)];bs)|| - 1
15. r0 ≤ (full-partition(I;[a / bs])[(i + 1) + 1] - full-partition(I;[a / bs])[i + 1])
16. (full-partition(I;[a / bs])[(i + 1) + 1] - full-partition(I;[a / bs])[i + 1]) ≤ partition-mesh(I;[a / bs])
⊢ [a / (bs @ [right-endpoint(I)])][i] ~ [left-endpoint(I); [a / (bs @ [right-endpoint(I)])]][i + 1]
Latex:
Latex:
1. I : Interval
2. icompact(I)
3. a : \mBbbR{}
4. bs : \mBbbR{} List
5. partitions(I;[a / bs])
6. partitions([left-endpoint(I), a];[])
7. partitions([a, right-endpoint(I)];bs)
8. partitions([left-endpoint(I), a];[])
9. partitions([a, right-endpoint(I)];bs)
10. left-endpoint(I) \mleq{} a
11. a \mleq{} right-endpoint(I)
12. partition-mesh([left-endpoint(I), a];[]) \mleq{} partition-mesh(I;[a / bs])
13. icompact([a, right-endpoint(I)])
14. i : \mBbbN{}||full-partition([a, right-endpoint(I)];bs)|| - 1
15. r0 \mleq{} (full-partition(I;[a / bs])[(i + 1) + 1] - full-partition(I;[a / bs])[i + 1])
16. (full-partition(I;[a / bs])[(i + 1) + 1] - full-partition(I;[a / bs])[i
+ 1]) \mleq{} partition-mesh(I;[a / bs])
\mvdash{} full-partition([a, right-endpoint(I)];bs)[i] \msim{} full-partition(I;[a / bs])[i + 1]
By
Latex:
(RepUR ``full-partition`` 0
THEN (Subst' left-endpoint([a, right-endpoint(I)]) \msim{} a 0
THENA (RepUR ``left-endpoint endpoints`` 0 THEN Auto)
)
)
Home
Index