Nuprl Lemma : partition-split-cons-mesh

[I:Interval]
  ∀[a:ℝ]. ∀[bs:ℝ List].
    (partitions(I;[a bs])
     (partitions([left-endpoint(I), a];[])
       ∧ partitions([a, right-endpoint(I)];bs)
       ∧ (left-endpoint(I) ≤ a)
       ∧ (a ≤ right-endpoint(I))
       ∧ (partition-mesh([left-endpoint(I), a];[]) ≤ partition-mesh(I;[a bs]))
       ∧ (partition-mesh([a, right-endpoint(I)];bs) ≤ partition-mesh(I;[a bs])))) 
  supposing icompact(I)


Proof




Definitions occuring in Statement :  partition-mesh: partition-mesh(I;p) partitions: partitions(I;p) icompact: icompact(I) rccint: [l, u] right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) interval: Interval rleq: x ≤ y real: cons: [a b] nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a implies:  Q member: t ∈ T and: P ∧ Q cand: c∧ B partitions: partitions(I;p) all: x:A. B[x] top: Top select: L[n] cons: [a b] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: guard: {T} decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A iff: ⇐⇒ Q subtype_rel: A ⊆B icompact: icompact(I) sorted-by: sorted-by(R;L) int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  le: A ≤ B last: last(L) subtract: m partition: partition(I) full-partition: full-partition(I;p) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] rbetween: x≤y≤z left-endpoint: left-endpoint(I) i-length: |I| endpoints: endpoints(I) sq_stable: SqStable(P) partition-mesh: partition-mesh(I;p) rleq: x ≤ y rnonneg: rnonneg(x) sq_type: SQType(T) rccint: [l, u] outl: outl(x) pi1: fst(t)
Lemmas referenced :  partition-split-cons length_of_cons_lemma add_nat_plus length_wf_nat real_wf less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf partitions_wf cons_wf list_wf icompact_wf interval_wf frs-non-dec-sorted-by rleq_transitivity last_wf assert_elim null_wf3 subtype_rel_list top_wf null_cons_lemma bfalse_wf btrue_neq_bfalse assert_wf right-endpoint_wf non_neg_length decidable__le intformle_wf int_formula_prop_le_lemma length_wf lelt_wf add-subtract-cancel list-cases length_of_nil_lemma product_subtype_list rleq_weakening_equal partition-mesh-nil adjacent-full-partition-points list_ind_cons_lemma length-append subtract_wf itermSubtract_wf int_term_value_subtract_lemma append_wf nil_wf right_endpoint_rccint_lemma left_endpoint_rccint_lemma sq_stable__rleq partition-mesh_wf rccint_wf rccint-icompact frs-mesh-bound full-partition_wf frs-mesh_wf less_than'_wf rsub_wf select_wf int_seg_properties subtract-is-int-iff int_seg_wf partition-mesh-nonneg add-member-int_seg2 select-cons-tl subtype_base_sq int_subtype_base decidable__equal_int
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination independent_functionElimination productElimination independent_pairFormation sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll because_Cache addLevel applyEquality levelHypothesis addEquality hypothesis_subsumption imageElimination independent_pairEquality minusEquality axiomEquality instantiate cumulativity

Latex:
\mforall{}[I:Interval]
    \mforall{}[a:\mBbbR{}].  \mforall{}[bs:\mBbbR{}  List].
        (partitions(I;[a  /  bs])
        {}\mRightarrow{}  (partitions([left-endpoint(I),  a];[])
              \mwedge{}  partitions([a,  right-endpoint(I)];bs)
              \mwedge{}  (left-endpoint(I)  \mleq{}  a)
              \mwedge{}  (a  \mleq{}  right-endpoint(I))
              \mwedge{}  (partition-mesh([left-endpoint(I),  a];[])  \mleq{}  partition-mesh(I;[a  /  bs]))
              \mwedge{}  (partition-mesh([a,  right-endpoint(I)];bs)  \mleq{}  partition-mesh(I;[a  /  bs])))) 
    supposing  icompact(I)



Date html generated: 2017_10_03-AM-09_41_52
Last ObjectModification: 2017_07_28-AM-07_56_51

Theory : reals


Home Index