Nuprl Lemma : adjacent-full-partition-points
∀[I:Interval]
  ∀[p:partition(I)]
    ∀i:ℕ||full-partition(I;p)|| - 1. r0≤full-partition(I;p)[i + 1] - full-partition(I;p)[i]≤partition-mesh(I;p) 
  supposing icompact(I)
Proof
Definitions occuring in Statement : 
partition-mesh: partition-mesh(I;p), 
full-partition: full-partition(I;p), 
partition: partition(I), 
icompact: icompact(I), 
interval: Interval, 
rbetween: x≤y≤z, 
rsub: x - y, 
int-to-real: r(n), 
select: L[n], 
length: ||as||, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
rbetween: x≤y≤z, 
and: P ∧ Q, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
sq_stable: SqStable(P), 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
partition: partition(I), 
full-partition: full-partition(I;p), 
sq_type: SQType(T), 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
less_than': less_than'(a;b), 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
icompact: icompact(I), 
nat: ℕ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
last: last(L), 
append: as @ bs, 
list_ind: list_ind, 
nil: [], 
right-endpoint: right-endpoint(I), 
pi2: snd(t), 
endpoints: endpoints(I), 
left-endpoint: left-endpoint(I), 
pi1: fst(t), 
ge: i ≥ j 
Lemmas referenced : 
adjacent-partition-points, 
sq_stable__and, 
rleq_wf, 
int-to-real_wf, 
rsub_wf, 
select_wf, 
real_wf, 
full-partition_wf, 
int_seg_properties, 
subtract_wf, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
subtract-is-int-iff, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
false_wf, 
partition-mesh_wf, 
sq_stable__rleq, 
less_than'_wf, 
nat_plus_wf, 
squash_wf, 
length_of_cons_lemma, 
length-append, 
length_of_nil_lemma, 
add-subtract-cancel, 
int_seg_wf, 
partition_wf, 
icompact_wf, 
interval_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
cons_wf, 
right-endpoint_wf, 
nil_wf, 
lelt_wf, 
left-endpoint_wf, 
rbetween_wf, 
true_wf, 
select_append_front, 
iff_weakening_equal, 
append_wf, 
le_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
length-singleton, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
select_cons_tl, 
general_arith_equation1, 
select-append, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
add-is-int-iff, 
list-cases, 
product_subtype_list, 
non_neg_length
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
productElimination, 
natural_numberEquality, 
independent_isectElimination, 
addEquality, 
setElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_functionElimination, 
independent_pairEquality, 
applyEquality, 
minusEquality, 
axiomEquality, 
imageMemberEquality, 
instantiate, 
cumulativity, 
dependent_set_memberEquality, 
universeEquality, 
equalityElimination, 
hypothesis_subsumption
Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)]
        \mforall{}i:\mBbbN{}||full-partition(I;p)||  -  1
            r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p) 
    supposing  icompact(I)
Date html generated:
2017_10_03-AM-09_41_17
Last ObjectModification:
2017_07_28-AM-07_56_28
Theory : reals
Home
Index