Nuprl Lemma : frs-mesh-bound

[p:ℝ List]. ∀[x:ℝ].  ((r0 ≤ x)  (∀[i:ℕ||p|| 1]. ((p[i 1] p[i]) ≤ x))  (frs-mesh(p) ≤ x))


Proof




Definitions occuring in Statement :  frs-mesh: frs-mesh(p) rleq: x ≤ y rsub: y int-to-real: r(n) real: select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] implies:  Q subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q frs-mesh: frs-mesh(p) all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b squash: T so_apply: x[s] rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B real:
Lemmas referenced :  lt_int_wf length_wf real_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf uall_wf int_seg_wf subtract_wf rleq_wf rsub_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt subtract-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf int-to-real_wf less_than'_wf frs-mesh_wf nat_plus_wf list_wf rmaximum-lub add-is-int-iff lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination lambdaEquality addEquality setElimination rename int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll pointwiseFunctionality imageElimination baseApply closedConclusion baseClosed independent_pairEquality applyEquality minusEquality axiomEquality dependent_set_memberEquality

Latex:
\mforall{}[p:\mBbbR{}  List].  \mforall{}[x:\mBbbR{}].    ((r0  \mleq{}  x)  {}\mRightarrow{}  (\mforall{}[i:\mBbbN{}||p||  -  1].  ((p[i  +  1]  -  p[i])  \mleq{}  x))  {}\mRightarrow{}  (frs-mesh(p)  \mleq{}  x))



Date html generated: 2017_10_03-AM-09_36_35
Last ObjectModification: 2017_07_28-AM-07_54_11

Theory : reals


Home Index