Nuprl Lemma : frs-mesh-bound
∀[p:ℝ List]. ∀[x:ℝ].  ((r0 ≤ x) 
⇒ (∀[i:ℕ||p|| - 1]. ((p[i + 1] - p[i]) ≤ x)) 
⇒ (frs-mesh(p) ≤ x))
Proof
Definitions occuring in Statement : 
frs-mesh: frs-mesh(p)
, 
rleq: x ≤ y
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
frs-mesh: frs-mesh(p)
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
so_apply: x[s]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
real: ℝ
Lemmas referenced : 
lt_int_wf, 
length_wf, 
real_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
uall_wf, 
int_seg_wf, 
subtract_wf, 
rleq_wf, 
rsub_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
subtract-is-int-iff, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
false_wf, 
int-to-real_wf, 
less_than'_wf, 
frs-mesh_wf, 
nat_plus_wf, 
list_wf, 
rmaximum-lub, 
add-is-int-iff, 
lelt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
lambdaEquality, 
addEquality, 
setElimination, 
rename, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
pointwiseFunctionality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_pairEquality, 
applyEquality, 
minusEquality, 
axiomEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[p:\mBbbR{}  List].  \mforall{}[x:\mBbbR{}].    ((r0  \mleq{}  x)  {}\mRightarrow{}  (\mforall{}[i:\mBbbN{}||p||  -  1].  ((p[i  +  1]  -  p[i])  \mleq{}  x))  {}\mRightarrow{}  (frs-mesh(p)  \mleq{}  x))
Date html generated:
2017_10_03-AM-09_36_35
Last ObjectModification:
2017_07_28-AM-07_54_11
Theory : reals
Home
Index